Спектральная классификация звезд: зависимость цвета и температуры. Почему звёзды разного цвета? Какая звезда горячее красная белая желтая

Специалисты выдвигают несколько теорий их возникновения. Наиболее вероятная из низ гласит о том, что такие звезды голубого цвета, очень давно были двойными, и у них происходил процесс слияния. Когда 2 звезды объединяются, то возникает новая звезда с гораздо большой яркостью, массой, температурой.

Голубые звезды примеры:

  • Гамма Парусов;
  • Ригель;
  • Дзета Ориона;
  • Альфа Жирафа;
  • Дзета Кормы;
  • Тау Большого Пса.

Звезды белого цвета — белые звезды

Один ученый обнаружил очень тусклую звезду белого цвета, которая была спутником Сириуса и она получила название Сириус В. Поверхность это уникальной звезды разогрета до 25000 Кельвинов, а радиус её маленький.

Белые звезды примеры:

  • Альтаир в созвездии Орла;
  • Вега в созвездии Лиры;
  • Кастор;
  • Сириус.

Звезды желтого цвета — желтые звезды

Такие звезды имеют свечение желтого цвета, а их масса находиться в пределах массы Солнца — это около 0,8-1,4. Поверхность таких звезд обычно разогрета до температуры 4-6 тыс. Кельвинов. Живет такая звезда около 10 млрд. лет.

Желтые звезды примеры:

  • Звезда HD 82943;
  • Толиман;
  • Дабих;
  • Хара;
  • Альхита.

Звезды красного цвета — красные звезды

Первые красные звезды открыли в 1868 году. Их температура довольно таки низкая, а внешние слои красных гигантов заполнены большим количеством углерода. Ранее подобные звезды составляли два спектральных класса — N и R, но сейчас ученые смогли определить еще один общий класс — C.

Величинами. По общему соглашению эти шкалы выбраны так, чтобы белая звезда, типа Сириуса, имела в обеих шкалах одну и ту же величину. Разность между фотографической и фотовизуальной величинами называется показателем цвета данной звезды. Для таких голубых звёзд, как Ригель, это число будет отрицательным, так как такие звёзды на обычной пластинке дают большее почернение, чем на чувствительной к жёлтому свету.

У красных звёзд типа Бетельгейзе показатель цвета доходит до +2-3 звёздных ве­личин. Это измерение цвета одновременно является и измерением поверхностной температуры звезды, причём голубые звёзды оказываются значительно горячее красных.

Поскольку показатели цвета можно довольно легко получить даже для очень слабых звёзд, они имеют большое значение при изучении распределения звёзд в пространстве.

К важнейшим инструментам исследования звезд, относятся приборы. Даже самый поверхностный взгляд на спектры звезд обнаруживает, что не все они одинаковы. Бальмеровские линии водорода в некоторых спектрах сильны, в некоторых - слабы, в некоторых — вообще отсутствуют.

Вскоре стало ясно, что спектры звёзд можно разделить на небольшое число классов, постепенно переходящих друг в друга. Ныне применяемая спектральная классификация была разработана в Гарвардской обсерватории под руководством Э. Пикеринга.

Вначале спектральные классы обозначались латинскими буквами в алфавитном порядке, но в процессе уточнения классификации установились следующие обозначения для последовательных классов: О, В, A, F, G, К, М. Кроме того, немногочисленные необычные звёзды объединяются в классы R, N и S, а отдельные индивидуумы, совершенно не укладывающиеся в эту классификацию, обозначаются символом PEC (peculiar — особенные).

Интересно отметить, что расположение звёзд по классам является одновременно и расположением по цвету.

  • Звёзды класса В, к которому относятся Ригель и многие другие звёзды в Орионе, - голубые;
  • классов O и А - белые (Сириус, Денеб);
  • классов F и G - жёлтые (Процион, Капелла);
  • классов К и М, - оранжевые и красные (Арктур, Альдебаран, Антарес, Бетельгейзе).

Расположив спектры в том же порядке, мы видим, как максимум интенсивности излучения сдвигается от фиолетового к красному концу спектра. Это указывает на понижение температуры по мере перехода от класса О к классу М. Место звезды в последовательности определяется скорее температурой её поверхности, чем химическим составом. Принято считать, что химический состав один и тот же для огромного большинства звёзд, но различные температуры и давления на поверхности вызывают большие различия в звёздных спектрах.

Голубые звёзды класса О являются самыми горячими. Их температура поверхности достигает 100 000°С. Спектры их легко узнать по присутствию некоторых характерных ярких линий или по распространению фона далеко в ультрафиолетовую область.

Непосредственно за ними следуют голубые звёзды класса В , также весьма горячие (поверхностная температура 25 000°С). Их спектры содержат линии гелия и водорода. Первые слабеют, а последние усиливаются при переходе к классу А .

В классах F и G (типичная звезда класса G - наше Солнце) постепенно усиливаются линии кальция и других металлов, как, например, железа и магния.

В классе К очень сильны линии кальция, появляются также молекулярные полосы.

Класс М включает красные звёзды с поверхностной температурой, меньшей 3000°С; в их спектрах видны полосы окиси титана.

Классы R, N и S относятся к параллельной ветви холодных звёзд, в спектрах которых присутствуют другие молекулярные компоненты.

Для знатока, однако, есть очень большая разница между «холодной» и «горячей» звёздами класса В. В точной классификационной системе каждый класс подразделяется ещё на несколько подклассов. Самые горячие звёзды класса В относятся к подклассу ВО , звёзды со средней для данного класса температурой - к подклассу В5 , самые холодные звёзды - к подклассу В9 . Непосредственно за ними следуют звёзды подкласса АО .

Изучение спектров звёзд оказывается весьма полезным, так как даёт возможность грубо расклассифицировать звёзды по абсолютным звёздным величинам. Например, звезда ВЗ является гигантом с абсолютной звёздной величиной, примерно равной - 2,5. Возможно, правда, что звезда окажется в десять раз ярче (абсолютная величина - 5,0) или в десять раз слабее (абсолютная величина 0,0), так как по одному только спектральному классу невозможно дать более точной оценки.

Устанавливая классификацию звёздных спектров, весьма важно попытаться внутри каждого спектрального класса отделить гиганты от карликов или там, где этого деления не существует, выделить из нормальной последовательности гигантов звёзды, обладающие слишком большой или слишком малой светимостью.

Всем известны три агрегатных состояния вещества - твёрдое, жидкое и газообразное . Что произойдёт с веществом при последовательном нагревании до высоких температур в замкнутом объёме? - Последовательный переход из одного агрегатного состояния в другое: твёрдое тело - жидкость - газ (вследствие увеличения скорости движения молекул при росте температуры). При дальнейшем нагревании газа при температурах свыше 1 200 ºС начинается распад молекул газа на атомы, а при температурах выше 10 000 ºС - частичный или полный распад атомов газа на составляющие их элементарные частицы - электроны и ядра атомов. Плазма - четвёртое состояние вещества, при котором молекулы или атомы вещества частично или полностью разрушены под действием высоких температур или по другим причинам. 99,9% вещества Вселенной находится в состоянии плазмы.

Звёзды - это класс космических тел, обладающих массой 10 26 -10 29 кг. Звезда - это раскалённое плазменное шарообразное космическое тело, находящееся, как правило, в гидродинамическом и термодинамическом равновесии.

Если равновесие нарушается, звезда начинает пульсировать (изменяются её размеры, светимость и температура). Звезда становится переменной звездой.

Переменная звезда - это звезда, у которой со временем изменяется блеск (видимая яркость на небе). Причинами переменности могут быть физические процессы в недрах звезды. Такие звёзды называют физическими переменными (например, δ Цефея. Похожие на неё переменные звёзды стали называть цефеидами ).


Встречаются и затменно-переменные звёзды, причиной переменности которых являются взаимные затмения их компонентов (например, β Персея - Алголь. Её переменность впервые обнаружил в 1669 г. итальянский экономист и астроном Джеминиано Монтанари) .


Затменно-переменные звёзды всегда являются двойными , т.е. состоят из двух близко расположенных звёзд. Переменные звёзды на звёздных картах обозначаются обведённым кружком:

Не всегда звёзды - шары. Если звезда очень быстро вращается, то её форма не шарообразная. Звезда сжимается с полюсов и становится похожей на мандарин или тыкву (например, Вега, Регул). Если звезда является двойной, то взаимное притяжение этих звёзд друг к другу также влияет на их форму. Они становятся яйцевидными или дынеобразными (например, компоненты двойной звезды β Лиры или Спики):


Звёзды - основные жители нашей Галактики (наша Галактика пишется с большой буквы). В ней насчитывается около 200 миллиардов звёзд. С помощью даже самых больших телескопов удаётся рассмотреть лишь полпроцента от общего количества звёзд Галактики. В звёздах сосредоточено более 95 % всего вещества, наблюдаемого в природе. Остальные 5 % составляют межзвёздный газ, пыль и все несамосветящие тела.

Кроме Солнца, все звёзды находятся от нас так далеко, что даже в самые крупные телескопы они наблюдаются в виде светящихся точек разного цвета и блеска. Ближайшей к Солнцу является система α Центавра, состоящая из трёх звёзд. Одна из них - красный карлик под названием Проксима - является самой близкой звездой. До неё 4,2 светового года. До Сириуса - 8,6 св. лет, до Альтаира - 17 св. лет. До Веги - 26 св. лет. До Полярной звезды - 830 св. лет. До Денеба - 1 500 св. лет. Впервые расстояние до другой звезды (это была Вега) в 1837 году смог определить В.Я. Струве.

Первая звезда, у которой удалось получить изображение диска (и даже каких-то пятен на нём) - Бетельгейзе (α Ориона). Но это потому, что по диаметру Бетельгейзе превосходит Солнце в 500-800 раз (звезда пульсирует). Также было получено изображение диска Альтаира (α Орла), но это потому, что Альтаир - одна из ближайших звёзд.

Цвет звёзд зависит от температуры их внешних слоёв. Диапазон температур - от 2 000 до 60 000 °С. Самые холодные звёзды - красные, а самые горячие - голубые. По цвету звезды можно судить, насколько сильно раскалены её внешние слои.


Примеры красных звёзд: Антарес (α Скорпиона) и Бетельгейзе (α Ориона).

Примеры оранжевых звёзд: Альдебаран (α Тельца), Арктур (α Волопаса) и Поллукс (β Близнецов).

Примеры жёлтых звёзд: Солнце, Капелла (α Возничего) и Толиман (α Центавра).

Примеры желтовато-белых звёзд: Процион (α Малого Пса) и Канопус (α Киля).

Примеры белых звёзд: Сириус (α Большого Пса), Вега (α Лиры), Альтаир (α Орла) и Денеб (α Лебедя).

Примеры голубоватых звёзд: Регул (α Льва) и Спика (α Девы).

Из-за того, что от звёзд приходит очень мало света, человеческий глаз способен различать цветовые оттенки только у самых ярких из них. В бинокль и тем более в телескоп (они улавливают больше света, чем глаз) цвет звёзд становится заметнее.

С глубиной температура нарастает. Даже у самых холодных звёзд в центре температура достигает миллионов градусов. У Солнца в центре около 15 000 000 °С (используют также шкалу Кельвина - шкалу абсолютных температур, но когда речь идёт об очень высоких температурах, разницей в 273 º между шкалами Кельвина и Цельсия можно пренебречь).

Что же так сильно разогревает звёздные недра? Оказывается, там происходят термоядерные процессы , в результате которых выделяется огромное количество энергии. В переводе с греческого "термос" означает тёплый. Основной химический элемент, из которого состоят звёзды - водород. Именно он и является топливом для термоядерных процессов. В этих процессах происходит превращение ядер атомов водорода в ядра атомов гелия, что сопровождается выделением энергии. Количество ядер водорода в звезде при этом уменьшается, а количество ядер гелия - увеличивается. Со временем в звезде синтезируются и другие химические элементы. Все химические элементы, из которых состоят молекулы различных веществ, родились когда-то в недрах звёзд. "Звёзды - это прошлое человека, а человек - это будущее звезды", - так иногда образно говорят.

Процесс испускания звездой энергии в виде электромагнитных волн и частиц называется излучением . Звёзды излучают энергию не только в виде света и тепла, но и других видов излучений - гамма-лучей, рентгеновского, ультрафиолетового, радиоизлучения. Кроме того, звёзды испускают потоки нейтральных и заряженных частиц. Эти потоки образуют звёздный ветер. Звёздный ветер - это процесс истечения вещества из звёзд в космическое пространство. В результате масса звёзд постоянно и постепенно уменьшается. Именно звёздный ветер от Солнца (солнечный ветер) приводит к появлению полярных сияний на Земле и других планетах. Именно солнечный ветер отклоняет хвосты комет в противоположную от Солнца сторону.

Звёзды появляются, естественно, не из пустоты (пространство между звёздами - это не абсолютный вакуум). Материалом служат газ и пыль. Они распределены в космосе неравномерно, образуя бесформенные облака очень маленькой плотности и громадной протяженности - от одного-двух до десятков световых лет. Такие облака называются диффузными газо-пылевыми туманностями. Температура в них очень низка - около -250 °С. Но не в каждой газо-пылевой туманности образуются звёзды. Некоторые туманности могут долгое время существовать без звёзд. Какие же условия необходимы для начала процесса зарождения звёзд? Первое, это масса облака. Если материи недостаточно, то, конечно, звезда не появится. Второе, компактность. В слишком протяжённом и рыхлом облаке не могут начаться процессы его сжатия. Ну, и в-третьих, нужна затравка - т.е. сгусток пыли и газа, который станет потом зародышем звезды - протозвездой. Протозвезда - это звезда на завершающем этапе своего формирования. Если эти условия соблюдаются, то начинается гравитационное сжатие и разогрев облака. Этот процесс заканчивается звездообразованием - появлением новых звёзд. Занимает этот процесс миллионы лет. Астрономами были найдены туманности, в которых процесс звездообразования в самом разгаре - некоторые звёзды уже зажглись, некоторые находятся в виде зародышей - протозвёзд, и туманность ещё сохранилась. Примером служит Большая Туманность Ориона.

Основными физическими характеристиками звезды являются светимость, масса и радиус (или диаметр), которые определяются из наблюдений. Зная их, а также химический состав звезды (что определяется по её спектру), можно рассчитать модель звезды, т.е. физические условия в её недрах, исследовать процессы, которые в ней происходят. Остановимся подробнее на основных характеристиках звёзд.

Масса. Непосредственно оценить массу можно только по гравитационному воздействию звезды на окружающие тела. Массу Солнца, например, определили по известным периодам обращения вокруг него планет. У других звёзд планеты непосредтвенно не наблюдаются. Достоверное измерение массы возможно лишь у двойных звёзд (при этом используется обобщённый Ньютоном III закон Кеплера, н о и тогда погрешность составляет 20-60 % ). Примерно половина всех звёзд в нашей Галактике - двойные. Массы звёзд колеблются от ≈0,08 до ≈100 масс Солнца. Звёзд с массой меньше 0,08 массы Солнца не бывает, они просто не становятся звёздами, а остаются тёмными телами. Звёзды массой более 100 масс Солнца встречаются крайне редко. Большая часть звёзд имеет массы менее 5 масс Солнца. От массы зависит судьба звезды, т.е. тот сценарий, по которому звезда развивается, эволюционирует. Маленькие холодные красные карлики весьма экономно расходуют водород и поэтому их жизнь продолжается сотни миллиардов лет. Продолжительность жизни Солнца - жёлтого карлика - около 10 миллиардов лет (Солнце уже прожило около половины своей жизни). Массивные сверхгиганты расходуют водород быстро и угасают уже через несколько миллионов лет после своего рождения. Чем массивнее звезда, тем короче её жизненный путь.

Возраст Вселенной оценивается в 13,7 миллиардов лет. Поэтому звёзд возрастом более 13,7 миллиардов лет пока не существует.

  • Звёзды с массой 0,08 массы Солнца - это коричневые карлики; их судьба - постоянное сжатие и остывание с прекращением всех термоядерных реакций и превращением в тёмные планетоподобные тела.
  • Звёзды с массой 0,08-0,5 массы Солнца (это всегда красные карлики) после израсходования водорода начинают медленно сжиматься, при этом нагреваясь и становясь белым карликом.
  • Звёзды с массой 0,5-8 масс Солнца в конце жизни превращаются сначала в красных гигантов, а затем в белых карликов. Внешние слои звезды при этом рассеиваются в космическом пространстве в виде планетарной туманности . Планетарная туманность часто имеет форму сферы или кольца.
  • Звёзды с массой 8-10 масс Солнца могут в конце жизни взрываться, а могут стареть спокойно, сначала превращаясь в красных сверхгигантов, а затем в красных карликов.
  • Звёзды с массой более 10 масс Солнца в конце жизненного пути сначала становятся красными сверхгигантами, потом взрываются как сверхновые (сверхновая звезда - это не новая, а старая звезда) и затем превращаются в нейтронные звёзды или становятся чёрными дырами.

Чёрные дыры - это не отверстия в космическом пространстве, а объекты (остатки массивных звёзд) с очень большой массой и плотностью. Чёрные дыры не обладают ни сверхъестественными, ни магическими силами, не являются "монстрами Вселенной". Просто они обладают таким сильным гравитационным полем, что никакое излучение (ни видимое - свет, ни невидимое) не может их покинуть. Поэтому чёрные дыры и не видимы. Однако, их можно обнаружить по их воздействию на окружающие звёзды, туманности. Чёрные дыры - совершенно обычное явление во Вселенной и пугаться их не стоит. В центре нашей Галактики, возможно, имеется сверхмассивная чёрная дыра.

Радиус (или диаметр) . Размеры звёзд варьируют в широких пределах - от нескольких километров (нейтронные звёзды) до 2 000 диаметров Солнца (сверхгиганты). Как правило, чем меньше звезда, тем выше её средняя плотность. У нейтронных звёзд плотность достигает 10 13 г/см 3 ! Напёрсток такого вещества весил бы на Земле 10 миллионов тонн. Зато у сверхгигантов плотность меньше плотности воздуха у поверхности Земли.

Диаметры некоторых звёзд в сравнении с Солнцем:

Сириус и Альтаир в 1,7 раза больше,

Вега в 2,5 раза больше,

Регул в 3,5 раза больше,

Арктур в 26 раз больше,

Полярная в 30 раз больше,

Ригель в 70 раз больше,

Денеб в 200 раз больше,

Антарес в 800 раз больше,

YV Большого Пса в 2 000 раз больше (самая крупная звезда из известных).


Светимость - это полная энергия, излучаемая объектом (в данном случае звёздами) в единицу времени. Светимость звёзд обычно сравнивают со светимостью Солнца (светимость звёзд выражают через светимость Солнца). Сириус, например, в 22 раза излучает больше энергии, чем Солнце (светимость Сириуса равна 22 Солнцам). Светимость Веги - 50 Солнц, а светимость Денеба - 54 000 Солнц (Денеб - это одна из самых мощных звёзд).

Видимая яркость (правильнее, блеск) звезды на земном небе зависит от:

- расстояния до звезды. Если звезда будет приближаться к нам, то её видимая яркость будет постепенно увеличиваться. И наоборот, при удалении звезды от нас её видимая яркость мало-помалу будет уменьшаться. Если взять две одинаковые звезды, то более близкая к нам будет казаться и более яркой.

- от температуры внешних слоёв. Чем сильнее раскалена звезда, тем больше световой энергии она посылает в пространство, и тем ярче она будет казаться. Если звезда остывает, то и видимая её яркость на небе будет уменьшаться. Две звезды одинаковых размеров и на одинаковых расстояниях от нас будут казаться одинаковыми по видимой яркости при условии, что они излучают одинаковое количество световой энергии, т.е. имеют одинаковую температуру внешних слоёв. Если же одна из звёзд холоднее другой, то и казаться она будет менее яркой.

- от размеров (диаметра). Если взять две звезды с одинаковой температурой внешних слоёв (одного цвета) и расположить их на одинаковом расстоянии от нас, то более крупная звезда будет излучать больше световой энергии, а значит, будет казаться на небе более яркой.

- от поглощения света нахоящимися на пути луча зрения облаками космической пыли и газа. Чем толще слой космической пыли, тем больше света от звезды он поглощает, и тем тусклее кажется звезда. Если мы возьмём две одинаковые звезды и поместим перед одной из них газо-пылевую туманность, то как раз эта звезда и будет казаться менее яркой.

- от высоты звезды над горизонтом. Возле горизонта всегда плотная дымка, которая поглощает часть света от звёзд. Возле горизонта (вскоре после восхода или незадолго перед заходом) звёзды всегда выглядят более тусклыми, чем когда они над головой.

Очень важно не путать понятия "казаться" и "быть". Звезда может быть очень яркой сама по себе, но казаться тусклой из-за различных причин: из-за большого расстояния до неё, из-за маленьких размеров, из-за поглощения её света космической пылью или пылью в атмосфере Земли. Поэтому, когда говорят о яркости звезды на земном небе, употребляют словосочетание "видимая яркость" или "блеск".


Как уже говорилось, существуют двойные звёзды. Но бывают и тройные (например, α Центавра), и четверные (например, ε Лиры), и пятерные, и шестерные (например, Кастор) и т.д. Отдельные звёзды в звёздной системе называют компонентами . Звёзды с числом компонентов более двух называют кратными звёздами. Все компоненты кратной звезды связаны силами взаимного тяготения (образуют систему звёзд) и движутся по сложным траекториям.

Если компонентов много, то это уже не кратная звезда, а звёздное скопление . Различают шаровые и рассеянные звёздные скопления. Шаровые скопления содержат много старых звёзд и являются более пожилыми, нежели скопления рассеянные, содержащие много молодых звёзд. Шаровые скопления довольно устойчивы, т.к. звёзды в них находятся на небольших расстояниях друг от друга и силы взаимного притяжения между ними намного больше, чем между звёздами рассеянных скоплений. Рассеянные скопления со временем ещё больше рассеиваются.

Рассеянные скопления, как правильно, располагаются на полосе Млечного Пути или поблизости. Наоборот, шаровые скопления располагаются на звёздном небе в стороне от Млечного Пути.

Некоторые звёздные скопления можно увидеть на небе даже невооружённым глазом. Например, рассеянные скопления Гиады и Плеяды (М 45) в Тельце, рассеянное скопление Ясли (М 44) в Раке, шаровое скопление М 13 в Геркулесе. Довольно много их видно в бинокль.

«Белые», – с уверенностью отвечаешь ты. Действительно, если взглянуть на ночное небо, то можно увидеть множество белых звезд. Но значит ли это, что звезд другого цвета не бывает? Может мы просто их не замечаем?

Звезды – это гигантские скопления раскаленного газа. Состоят они в основном из двух видов газа – водорода и гелия. Из-за синтеза водорода и гелия происходит выброс энергии, благодаря которому звезды такие яркие и горячие и, наверное, поэтому кажутся нам белыми. А что насчет самой известной звезды – ? Она уже не кажется нам такой белой, и больше похожа на желтую. А еще есть красные, коричневые, голубые звезды.

Для того, чтобы понять, почему звезды бывают разных цветов, надо проследить весь жизненный путь звезды от момента ее возникновения, до полного угасания.

Photo by Nigel Howe
Зарождение звезды начинается с гигантского облака пыли, называемого туманностью . Сила гравитации заставляет пыль притягиваться друг к другу. Чем больше она стягивается, тем сильнее становится сила гравитации. Это приводит к тому, что облако начинает нагреваться и зарождается протозвезда . Как только ее центр станет достаточно горячим, начнется ядерный синтез, который положит начало молодой звезде. Теперь эта звезда будет жить и вырабатывать энергию в течение миллиардов лет. Этот период ее жизни называется «главной последовательностью» . Звезда будет оставаться в таком состоянии до тех пор, пока не сгорит весь водород. Как только закончится водород, внешняя часть звезды начнет расширяться, и звезда превратится в Красного гиганта – звезду с низкой температурой и сильным свечением. Пройдет какое-то время и ядро звезды начнет вырабатывать железо. Этот процесс заставит звезду разрушаться. А что произойдет дальше зависит от размера звезды. Если она была среднего размера, то станет Белым карликом . Большие же звезды вызовут огромный ядерный взрыв и станут Сверхновыми звездами , которые закончат свою жизнь, превратившись в черные дыры или нейтронные звезды.

Теперь ты понимаешь, что каждая звезда проходит разные пути своего развития и постоянно меняет свой размер, цвет, яркость, температуру. Отсюда столько разновидностей звезд. Самые маленькие звезды – красные. Средние звезды имеют желтую окраску, например, наше Солнце. Звезды побольше – синие, они являются самыми яркими звездами. Коричневые карлики имеют очень маленькую энергию и не способны компенсировать потерю энергии на излучение. Белые карлики – это постепенно остывающие звезды, которые вскоре становятся невидимыми и темными.

Единственная звезда нашей Солнечной системы, Солнце, относится к типу «желтых карликов». Полярная звезда, которая указывает путь морякам – голубой сверхгигант. А ближайшая к Солнцу звезда Проксима Центавра является красным карликом. Большинство звезд во Вселенной являются также красными карликами. А мы видим все звезды белыми, почему? Оказывается, виной тому тусклость звезд и наше зрение. Оно недостаточно зоркое, чтобы уловить разные цвета таких звезд. Но цвет самых ярких звезд мы, все таки, можем различить.

Теперь ты знаешь, что звезды бывают не только белые и сможешь легко справиться с заданием.

Задание:

  1. Нарисуй небо полное разноцветных звезд. Именно такое небо, которое мы видели бы, если бы имели более зоркое зрение.

Каждый человек знает, как выглядят звезды на небе. Крошечные, сияющие огоньки. В древности люди не могли придумать объяснения этому явлению. Звезды считали глазами богов, душами умерших предков, хранителями и защитниками, оберегающими покой человека в ночной тьме. Тогда никто и подумать не мог, что Солнце - это тоже звезда.

Что такое звезда

Много веков прошло, прежде чем люди поняли, что представляют собой звезды. Виды звезд, их характеристики, представления о происходящих там химических и физических процессах - это новая область знания. Древние астрономы даже предположить не могли, что такое светило на самом деле вовсе не крохотный огонек, а невообразимых размеров шар раскаленного газа, в котором происходят реакции

термоядерного синтеза. Есть странный парадокс в том, что неяркий звездный свет - это ослепительное сияние ядерной реакции, а уютное солнечное тепло - чудовищный жар миллионов кельвинов.

Все звезды, которые можно увидеть на небосводе невооруженным глазом, находятся в галактике Млечный Путь. Солнце - тоже часть этой причем расположено оно на ее окраине. Невозможно себе вообразить, как выглядело бы ночное небо, если бы Солнце находилось в центре Млечного Пути. Ведь количество звезд в этой галактике - более 200 миллиардов.

Немного об истории астрономии

Древние астрономы тоже могли бы рассказать необычное и интересное о звездах на небе. Уже шумеры выделяли отдельные созвездия и зодиакальный круг, они же впервые рассчитали деление полного угла на 360 0 . Они же создали лунный календарь и смогли синхронизировать его с солнечным. Египтяне считали, что Земля находится в но при этом знали, что Меркурий и Венера вращаются вокруг Солнца.

В Китае астрономией как наукой занимались уже в конце ІІІ тысячелетия до н. э., а

первые обсерватории появились в XII в. до н. э. Они изучали лунные и солнечные затмения, сумев при этом понять их причину и даже рассчитав прогнозные даты, наблюдали метеоритные потоки и траектории комет.

Древние инки знали различия между звездами и планетами. Есть косвенные доказательства того, что им были известны Галилеевы и визуальная размытость очертаний диска Венеры, обусловленная наличием на планете атмосферы.

Древние греки смогли доказать шарообразность Земли, выдвинули предположение о гелиоцентричности системы. Они пытались рассчитать диаметр Солнца, пускай и ошибочно. Но греки были первыми, кто в принципе предположил, что Солнце больше Земли, до этого все, полагаясь на визуальные наблюдения, считали иначе. Грек Гиппарх впервые создал каталог светил и выделил разные виды звезд. Классификация звезд в этом научном труде опиралась на интенсивность свечения. Гиппарх выделил 6 классов яркости, всего в каталоге было 850 светил.

На что обращали внимание древние астрономы

Первоначальная классификация звезд основывалась на их яркости. Ведь именно этот критерий является единственно доступным для астронома, вооруженного только телескопом. Самые яркие или обладающие уникальными видимыми свойствами звезды даже получали собственные имена, причем у каждого народа они свои. Так, Денеб, Ригель и Алголь - названия арабские, Сириус - латинское, а Антарес - греческое. Полярная звезда в каждом народе имеет собственное название. Это, пожалуй, одна из самых важных в «практическом смысле» звезд. Ее координаты на ночном небосводе неизменны, несмотря на вращение земли. Если остальные звезды движутся по небу, проходя путь от восхода до заката, то Полярная звезда не меняет своего местоположения. Поэтому именно ее использовали моряки и путешественники в качестве надежного ориентира. Кстати, вопреки распространенному заблуждению, это вовсе не самая яркая звезда на небосклоне. Полярная звезда внешне никак не выделяется - ни по размерам, ни по интенсивности свечения. Найти ее можно, только если знать, куда смотреть. Она располагается на самом конце «рукоятки ковша» Малой Медведицы.

На чем основывается звездная классификация

Современные астрономы, отвечая на вопрос о том, какие виды звезд бывают, вряд ли станут упоминать яркость свечения или расположение на ночном небосводе. Разве что в порядке исторического экскурса или в лекции, рассчитанной на совсем уж далекую от астрономии аудиторию.

Современная классификация звезд основывается на их спектральном анализе. При этом обычно еще указывают массу, светимость и радиус небесного тела. Все эти показатели даются в соотношении с Солнцем, то есть именно его характеристики приняты в качестве единиц измерения.

Классификация звезд опирается на такой критерий, как абсолютная звездная величина. Это видимая степень яркости без атмосферы, условно расположенного на расстоянии 10 парсек от точки наблюдения.

Кроме этого учитывают переменности блеска и размеры звезды. Виды звезд в настоящее время определяются их спектральным классом и уже детальнее - подклассом. Астрономы Рассел и Герцшпрунг независимо друг от друга проанализировали зависимость между светимостью, абсолютной температурной поверхностью и спектральным классом светил. Они построили диаграмму с соответствующими осями координат и обнаружили, что результат вовсе не хаотичен. Светила на графике располагались отчетливо различимыми группами. Диаграмма позволяет, зная спектральный класс звезды, определить хотя бы с приблизительной точностью ее абсолютную звездную величину.

Как рождаются звезды

Эта диаграмма послужила наглядным доказательством в пользу современной теории эволюции данных небесных тел. На графике отчетливо видно, что самым многочисленным классом являются относящиеся к так называемой главной последовательности звезды. Виды звезд, принадлежащих к этому сегменту, находятся в наиболее распространенной в данный момент во Вселенной точке развития. Это этап развития светила, при котором энергия, затраченная на излучение, компенсируется полученной в ходе термоядерной реакции. Длительность пребывания на данном этапе развития определяется массой небесного тела и процентным содержанием элементов тяжелее гелия.

Общепризнанная в данный момент теория эволюции звезд гласит, что на начальном

этапе развития светило представляет собой разряженное гигантское газовое облако. Под влиянием собственного тяготения оно сжимается, постепенно превращаясь в шар. Чем сильнее сжатие, тем интенсивнее гравитационная энергия переходит в тепловую. Газ раскаляется, и когда температура достигает 15-20 млн К, в новорожденной звезде запускается термоядерная реакция. После этого процесс гравитационного сжатия приостанавливается.

Основной период жизни звезды

Поначалу в недрах юного светила преобладают реакции водородного цикла. Это самый длительный период жизни звезды. Виды звезд, находящихся на этом этапе развития, и представлены в самой массовой главной последовательности описанной выше диаграммы. Со временам водород в ядре светила заканчивается, превратившись в гелий. После этого термоядерное горение возможно только на периферии ядра. Звезда становится ярче, ее внешние слои значительно расширяются, а температура понижается. Небесное тело превращается в красный гигант. Этот период жизни звезды

намного короче предыдущего. Дальнейшая ее судьба изучена мало. Есть различные предположения, но достоверных им подтверждений пока не получено. Самая распространенная теория гласит, что когда гелия становится слишком много, звездное ядро, не выдерживая собственной массы, сжимается. Температура растет до тех пор, пока уже гелий не вступает в термоядерную реакцию. Чудовищные температуры приводят к очередному расширению, и звезда превращается в красного гиганта. Дальнейшая судьба светила, по предположениям ученых, зависит от его массы. Но теории, касающиеся этого, всего лишь результат компьютерного моделирования, не подтвержденный наблюдениями.

Остывающие звезды

Предположительно, красные гиганты с малой массой будут сжиматься, превращаясь в карликов и постепенно остывая. Звезды средней массы могут трансформироваться в при этом в центре такого образования продолжит свое существование лишенное внешних покровов ядро, постепенно остывая и превращаясь в белого карлика. Если центральная звезда испускала значительное инфракрасное излучение, возникают условия для активации в расширяющейся газовой оболочке планетарной туманности космического мазера.

Массивные светила, сжимаясь, могут достигать такого уровня давления, что электроны буквально вминаются в атомные ядра, превращаясь в нейтроны. Поскольку между

этими частицами нет сил электростатического отталкивания, звезда может сжаться до размера нескольких километров. При этом ее плотность превысит плотность воды в 100 миллионов раз. Такая звезда называется нейтронной и представляет собой, по сути, огромное атомное ядро.

Сверхмассивные звезды продолжают свое существование, последовательно синтезируя в процессе термоядерных реакций из гелия - углерод, затем кислород, из него - кремний и, наконец, железо. На этом этапе термоядерной реакции и происходит взрыв сверхновой. Сверхновые звезды, в свою очередь, могут превратиться в нейтронные либо, если их масса достаточно велика, продолжить сжатие до критического предела и образовать черные дыры.

Размеры

Классификация звезд по размеру может быть реализована двояко. Физический размер звезды может определяться ее радиусом. Единицей измерения в этом случае выступает радиус Солнца. Существуют карлики, звезды средней величины, гиганты и сверхгиганты. Кстати, само Солнце является как раз карликом. Радиус нейтронных звезд может достигать всего нескольких километров. А в сверхгиганте целиком поместится орбита планеты Марс. Под размером звезды может также пониматься ее масса. Она тесно связана с диаметром светила. Чем звезда больше, тем ниже ее плотность, и наоборот, чем светило меньше, тем плотность выше. Этот критерий вирируется не так уж сильно. Звезд, которые были бы больше или меньше Солнца в 10 раз, очень мало. Большая часть светил укладывается в интервал от 60 до 0,03 солнечных масс. Плотность Солнца, принимаемая за стартовый показатель, составляет 1,43 г/см 3 . Плотность белых карликов достигает 10 12 г/см 3 , а плотность разреженных сверхгигантов может быть в миллионы раз меньше солнечной.

В стандартной классификации звезд схема распределения по массе выглядит следующим образом. К малым относят светила с массой от 0,08 до 0,5 солнечной. К умеренным - от 0,5 до 8 солнечных масс, а к массивным - от 8 и более.

Классификация звезд. От голубых до белых

Классификация звезд по цвету на самом деле опирается не на видимое свечение тела, а на спектральные характеристики. Спектр излучения объекта определяется химическим составом звезды, от него же зависит ее температура.

Наиболее распространенной является Гарвардская классификация, созданная в начале 20 века. Согласно принятым тогда стандартам классификация звезд по цвету предполагает деление на 7 типов.

Так, звезды с самой высокой температурой, от 30 до 60 тыс. К, относят к светилам класса О. Они голубого цвета, масса подобных небесных тел достигает 60 солнечных масс (с. м.), а радиус - 15 солнечных радиусов (с. р.). Линии водорода и гелия в их спектре достаточно слабые. Светимость подобных небесных объектов может достигать 1 млн 400 тыс. солнечных светимостей (с. с.).

К звездам класса В относят светила с температурой от 10 до 30 тыс. К. Это небесные тела бело-голубого цвета, их масса начинается от 18 с. м., а радиус - от 7 с. м. Самая низкая светимость объектов такого класса составляет 20 тыс. с. с., а линии водорода в спектре усиливаются, достигая средних значений.

У звезд класса А температура колеблется от 7,5 до 10 тыс. К, они белого цвета. Минимальная масса таких небесных тел начинается от 3,1 с. м., а радиус - от 2,1 с. р. Светимость объектов находится в границах от 80 до 20 тыс. с. с. Линии водорода в спектре этих звезд сильные, появляются линии металлов.

Объекты класса F на самом деле желто-белого цвета, но выглядят белыми. Их температура колеблется в пределах от 6 до 7,5 тыс. К, масса варьируется от 1,7 до 3,1 с.м., радиус - от 1,3 до 2,1 с. р. Светимость таких звезд варьируется от 6 до 80 с. с. Линии водорода в спектре ослабевают, линии металлов, наоборот, усиливаются.

Таким образом, все виды белых звезд попадают в пределы классов от А до F. Дальше, согласно классификации, следуют желтые и оранжевые светила.

Желтые, оранжевые и красные звезды

Виды звезд по цвету распределяются от голубых к красным, по мере понижения температуры и уменьшения размеров и светимости объекта.

Звезды класса G, к которым относится и Солнце, достигают температуры от 5 до 6 тыс. К, они желтого цвета. Масса таких объектов - от 1,1 до 1,7 с. м., радиус - от 1,1 до 1,3 с. р. Светимость - от 1,2 до 6 с. с. Спектральные линии гелия и металлов интенсивны, линии водорода все слабее.

Светила, относящиеся к классу К, имеют температуру от 3,5 до 5 тыс. К. Выглядят они желто-оранжевыми, но истинный цвет этих звезд - оранжевый. Радиус данных объектов находится в промежутке от 0,9 до 1,1 с. р., масса - от 0,8 до 1,1 с. м. Яркость колеблется от 0,4 до 1,2 с. с. Линии водорода практически незаметны, линии металлов очень сильны.

Самые холодные и маленькие звезды - класса М. Их температура всего 2,5 - 3,5 тыс. К и кажутся они красными, хотя на самом деле эти объекты оранжево-красного цвета. Масса звезд находится в промежутке от 0,3 до 0,8 с. м., радиус - от 0,4 до 0,9 с. р. Светимость - всего 0,04 - 0,4 с. с. Это умирающие звезды. Холоднее их только недавно открытые коричневые карлики. Для них выделили отдельный класс М-Т.



Loading...Loading...