Искусственные органы человека. Выращивание искусственных органов Искусственные органы и клетки

Современная медицинская техника позволяет заменять полностью или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы - вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

Во время сложнейших операций, проводимых на сердце, легких или почках, неоценимую помощь медикам оказывают «Аппарат искусственного кровообращения», «Искусственное легкое», «Искусственное сердце», «Искусственная почка», которые принимают на себя функции оперируемых органов, позволяют на время приостановить их работу.

«Искусственное легкое» представляет собой пульсирующий насос, который подает воздух порциями с частотой 40-50 раз в минуту. Обычный поршень для этого не подходит, в ток воздуха могут попасть частички материала его трущихся частей или уплотнителя. Здесь, и в других подобных устройствах используют мехи из гофрированного металла или пластика - сильфоны. Очищенный и доведенный до требуемой температуры воздух подается непосредственно в бронхи.

«Аппарат искусственного кровообращения» устроен аналогично. Его шланги подключаются к кровеносным сосудам хирургическим путем. Первая попытка замещения функции сердца механическим аналогом была сделана еще в 1812 году. Однако до сих пор среди множества изготовленных аппаратов нет полностью удовлетворяющего врачей.

Отечественные ученые и конструкторы разработали ряд моделей под общим названием «Поиск». Это четырехкамерный протез сердца с желудочками мешотчатого типа, предназначенный для имплантации в ортотопическую позицию.

В модели различают левую и правую половины, каждая из которых состоит из искусственного желудочка и искусственного предсердия. Составными элементами искусственного желудочка являются: корпус, рабочая камера, входной и выходной клапаны. Корпус желудочка изготавливается из силиконовой резины методом наслоения. Матрица погружается в жидкий полимер, вынимается и высушивается - и так раз за разом, пока на поверхности матрицы не создается многослойная плоть сердца. Рабочая камера по форме аналогична корпусу. Ее изготавливали из латексной резины, а потом из силикона. Конструктивной особенностью рабочей камеры является различная толщина стенок, в которых различают активные и пассивные участки. Конструкция рассчитана таким образом, что даже при полном напряжении активных участков противоположные стенки рабочей поверхности камеры не соприкасаются между собой, чем устраняется травма форменных элементов крови.

Российский конструктор Александр Дробышев, несмотря на все трудности, продолжает создавать новые современные конструкции «Поиска», которые будут значительно дешевле зарубежных образцов.

Одна из лучших на сегодня зарубежных систем «Искусственное сердце» «Новакор» стоит 400 тысяч долларов. С ней можно целый год дома ждать операции. В кейсе-чемоданчике «Новакора» находятся два пластмассовых желудочка. На отдельной тележке наружный сервис компьютер управления, монитор контроля, который остается в клинике на глазах у врачей. Дома, с больным блок питания, аккумуляторные батареи, которые сменяются и подзаряжаются от сети. Задача больного - следить за зеленым индикатором ламп, показывающих заряд аккумуляторов.

Аппараты «Искусственная почка» работают уже довольно давно и успешно применяются медиками. Еще в 1837 году, изучая процессы движения растворов через полупроницаемые мембраны, Т. Грехен впервые применил и ввел в употребление термин «диализ» (от греческого dialisis - отделение). Но лишь в 1912 году на основе этого метода в США был сконструирован аппарат, с помощью которого его авторы проводили в эксперименте удаление салицилатов из крови животных. В аппарате, названном ими «искусственная почка», в качестве полупроницаемой мембраны были использованы трубочки из коллодия, по которым текла кровь животного, а снаружи они омывались изотоническим раствором хлорида натрия. Впрочем, коллодий, примененный Дж. Абелем, оказался довольно хрупким материалом и в дальнейшем другие авторы для диализа пробовали иные материалы, такие как кишечник птиц, плавательный пузырь рыб, брюшину телят, тростник, бумагу…

Для предотвращения свертывания крови использовали гирудин - полипептид, содержащийся в секрете слюнных желез медицинской пиявки. Эти два открытия и явились прототипом всех последующих разработок в области внепочечного очищения.

Каковы бы не были усовершенствования в этой области, принцип пока остается одним и тем же. В любом варианте «искусственная почка» включает в себя полупроницаемую мембрану, с одной стороны которой течет кровь, а с другой стороны - солевой раствор. Для предотвращения свертывания крови используют антикоагулянты - лекарственные вещества, уменьшающие свертываемость крови. В этом случае происходит выравнивание концентраций низкомолекулярных соединений ионов, мочевины, креатинина, глюкозы, других веществ с малой молекулярной массой. При увеличении пористости мембраны возникает перемещение веществ с большей молекулярной массой. Если же к этому процессу добавить избыточное гидростатическое давление со стороны крови или отрицательное давление со стороны омывающего раствора, то процесс переноса будет сопровождаться и перемещением воды - конвекционный массообмен. Для переноса воды можно воспользоваться и осмотическим давлением, добавляя в диализат осмотически активные вещества. Чаще всего с этой целью использовали глюкозу, реже фруктозу и другие сахара и еще реже продукты иного химического происхождения. При этом, вводя глюкозу в больших количествах, можно получить действительно выраженный дегидратационный эффект, однако повышение концентрации глюкозы в диализате выше некоторых значений не рекомендуется из-за возможности развития осложнений. Наконец, можно вообще отказаться от омывающего мембрану раствора (диализата) и получить выход через мембрану жидкой части крови вода и вещества с молекулярной массой широкого диапазона.

В 1925 году Дж. Хаас провел первый диализ у человека, а в 1928 году он же использовал гепарин, поскольку длительное применение гирудина было связано с токсическими эффектами, да и само его воздействие на свертывание крови было нестабильным. Впервые же гепарин был применен для диализа в 1926 году в эксперименте X. Нехельсом и Р. Лимом.

Поскольку перечисленные выше материалы оказывались малопригодными в качестве основы для создания полупроницаемых мембран, продолжался поиск других материалов. И в 1938 году впервые для гемодиализа был применен целлофан, который в последующие годы длительное время оставался основным сырьем для производства полупроницаемых мембран.

Первый же аппарат «искусственная почка», пригодный для широкого клинического применения, был создан в 1943 году В.Колффом и X.Берком. Затем эти аппараты усовершенствовались. При этом развитие технической мысли в этой области вначале касалось в большей степени именно модификации диализаторов и лишь в последние годы стало затрагивать в значительной мере собственно аппараты. В результате появилось два основных типа диализатора. Так называемых катушечных, где использовали трубки из целлофана, и плоскопараллельных, в которых применялись плоские мембраны.

В 1960 году Ф.Киил сконструировал весьма удачный вариант плоскопараллельного диализатора с пластинами из полипропилена, и в течение ряда лет этот тип диализатора и его модификации распространились по всему миру, заняв ведущее место среди всех других видов диализаторов. Затем процесс создания более эффективных гемодиализаторов и упрощения техники гемодиализа развивался в двух основных направлениях. Конструирование самого диализатора, причем доминирующее положение со временем заняли диализаторы однократного применения, и использование в качестве полупроницаемой мембраны новых материалов. Диализатор - сердце «искусственной почки», и поэтому основные усилия химиков и инженеров были всегда направлены на совершенствование именно этого звена в сложной системе аппарата в целом. Однако, техническая мысль не оставляла без внимания и аппарат как таковой.

В 1960-х годах возникла идея применения так называемых центральных систем, то есть аппаратов «искусственная почка», в которых диализат готовили из концентрата - смеси солей, концентрация которых в 30-34 раза превышала концентрацию их в крови больного.

Комбинация диализа «на слив» и техники рециркуляции была использована в ряде аппаратов «искусственная почка», например американской фирмой «Travenol». В этом случае около 8 литров диализата с большой скоростью циркулировало в отдельной емкости, в которую был помещен диализатор, и в которую каждую минуту добавляли по 250 миллилитров свежего раствора и столько же выбрасывали в канализацию.

На первых порах для гемодиализа использовали простую водопроводную воду, потом из-за ее загрязненности, в частности микроорганизмами, пробовали применять дистиллированную воду, но это оказалось очень дорогим и малопроизводительным делом. Радикально вопрос был решен после создания специальных систем по подготовке водопроводной воды, куда входят фильтры для ее очистки от механических загрязнений, железа и его окислов, кремния и других элементов, ионообменные смолы для устранения жесткости воды и установки так называемого «обратного» осмоса.

Много усилий было затрачено на совершенствование мониторных систем аппаратов «искусственная почка». Так, кроме постоянного слежения за температурой диализата, стали постоянно наблюдать с помощью специальных датчиков и за химическим составом диализата, ориентируясь на общую электропроводность диализата, которая меняется при снижении концентрации солей и повышается при увеличении таковой. После этого в аппаратах «искусственная почка» стали применять ионо-селективные проточные датчики, которые постоянно следили бы за ионной концентрацией. Компьютер же позволил управлять процессом, вводя из дополнительных емкостей недостающие элементы, или менять их соотношение, используя принцип обратной связи.

Величина ультрафильтрации в ходе диализа зависит не только от качества мембраны, во всех случаях решающим фактором является трансмембранное давление. Поэтому в мониторах стали широко применять датчики давления: степень разрежения по диализату, величина давления на входе и выходе диализатора. Современная техника, использующая компьютеры, позволяет программировать процесс ультрафильтрации. Выходя из диализатора, кровь попадает в вену больного через воздушную ловушку, что позволяет судить на глаз о приблизительной величине кровотока, склонности крови к свертыванию. Для предупреждения воздушной эмболии эти ловушки снабжают воздуховодами, с помощью которых регулируют в них уровень крови. В настоящее время во многих аппаратах на воздушные ловушки надевают ультразвуковые или фотоэлектрические детекторы, которые автоматически перекрывают венозную магистраль при падении в ловушке уровня крови ниже заданного.

Недавно ученые создали приборы, помогающие людям, потерявшим зрение - полностью или частично.

Чудо-очки, например, разработаны в научно-внедренческой производственной фирме «Реабилитация» на основе технологий, использовавшихся ранее лишь в военном деле. Подобно ночному прицелу, прибор действует по принципу инфракрасной локации. Черно-матовые стекла очков на самом деле представляют собой пластины из оргстекла, между которыми заключено миниатюрное локационное устройство. Весь локатор вместе с очковой оправой весит порядка 50 граммов - примерно столько же, сколько и обыкновенные очки. И подбирают их, как и очки для зрячих, строго индивидуально, чтобы было и удобно, и красиво. «Линзы» не только выполняют свои прямые функции, но и прикрывают дефекты глаз. Из двух десятков вариантов каждый может выбрать для себя наиболее подходящий. Пользоваться очками совсем не трудно: надо надеть их и включить питание. Источником энергии для них служит плоский аккумулятор размерами с сигаретную пачку. Здесь же, в блоке, помещается и генератор. Излучаемые им сигналы, натолкнувшись на преграду, возвращаются назад и улавливаются «линзами-приемниками». Принятые импульсы усиливаются, сравниваются с пороговым сигналом, и, если есть преграда, тотчас звучит зуммер - тем громче, чем ближе подошел к ней человек. Дальность действия прибора можно регулировать, используя один из двух диапазонов.

Работы по созданию электронной сетчатки успешно ведутся американскими специалистами НАСА и Главного центра при университете Джона Гопкинса.

На первых порах они постарались помочь людям, у которых еще сохранились кое-какие остатки зрения. «Для них созданы телеочки, - пишут в журнале «Юный техник» С. Григорьев и Е. Рогов, - где вместо линз установлены миниатюрные телеэкраны. Столь же миниатюрные видеокамеры, расположенные на оправе, пересылают в изображение все, что попадает в поле зрения обычного человека. Однако для слабовидящего картина еще и дешифруется с помощью встроенного компьютера. Такой прибор особых чудес не создает и слепых зрячими не делает - считают специалисты, но позволит максимально использовать еще оставшиеся у человека зрительные способности, облегчит ориентацию.

Например, если у человека осталась хотя бы часть сетчатки, компьютер «расщепит» изображение таким образом, чтобы человек мог видеть окружающее хотя бы с помощью сохранившихся периферийных участков.

По оценкам разработчиков, подобные системы помогут примерно 2,5 миллионов людей, страдающих дефектами зрения. Ну а как быть с теми, у кого сетчатка практически полностью утрачена? Для них ученые глазного центра, работающего при университете Дюка (штат Северная Каролина), осваивают операции по вживлению электронной сетчатки. Под кожу имплантируются специальные электроды, которые, будучи соединены с нервами, передают изображение в мозг. Слепой видит картину, состоящую из отдельных светящихся точек, очень похожую на демонстрационное табло, что устанавливают на стадионах, вокзалах и в аэропортах. Изображение на «табло» опять-таки создают миниатюрные телекамеры, укрепленные на очковой оправе».

И, наконец, последнее слово науки на сегодняшний день - попытка методами современной микротехнологии создать новые чувствительные центры на поврежденной сетчатке. Такими операциями занимаются сейчас в Северной Каролине профессор Рост Пропет и его коллеги. Совместно со специалистами НАСА они создали первые образцы субэлектронной сетчатки, которая непосредственно имплантируется в глаз.

«Наши пациенты, конечно, никогда не смогут любоваться полотнами Рембрандта, - комментирует профессор. - Однако различать, где дверь, а где окно, дорожные знаки и вывески они все-таки будут.. »

Сотрудники лучшего частного детективного агентства в Москве профессионально решат ваши вопросы.

Когда речь заходит о создании в лабораторных условиях человеческих органов, способных выполнять предписанные природой функции в организме человека, на лице большинства невольно возникает скептическая ухмылка. Как-то это больше похоже на фантастику.

Тем не менее, сегодня выращивание новых органов – самая что ни на есть объективная реальность, как и первые пациенты, жизни которых спасены, благодаря уникальнейшим операциям по пересадке органов. И с гордостью хочется заявить, что эти первопроходческие исследования в области регенеративной медицины осуществляются у нас на Кубани.

Рассказ человека, которому посчастливилось всю информацию получить из первых уст, хочется передать без купюр, что мы и делаем.

Паоло Маккиарини – это не только итальянское имя. Этот человек - истинный итальянец, с присущим его национальности темпераментом и эмоциональностью. Выражая свое восхищение, он с восторгом восклицает: «Фантастика!!!», тут же запросто переходя к отчаянному возгласу: «Они ждут, когда я умру!!!», упоминая о коллегах, испытывающих чувство досады от превосходства этого человека, и далее продолжая самозабвенно делиться перспективами новейших разработок, дающих надежду на спасение новых человеческих жизней.

Являясь участником сочинской конференции «Генетика старения и долголетия», на которую прибыли известнейшие специалисты в этой области со всего мира, Паоло Маккиарини оказался в более выигрышном положении, потому что преодолевать кордоны ему не пришлось, не смотря на то, что специалист он вселенского масштаба.


Уже несколько лет этот человек, является руководителем Центра регенеративной медицины Кубанского медицинского университета. Чтобы получить согласие профессора Маккиарини приехать на работу в Краснодар, правительство России выделило 150 миллионов рублей на создание центра.

Профессор с благодарностью отмечает, что работая в нашей стране, у него нет необходимости выискивать возможности для решения финансовых проблем, и все свое время и талант он максимально использует для спасения жизни людей.

Как создаются органы для трансплантации

Паоло Маккиарини является автором и разработчиком новаторской технологии выращивания трахеи, что, действительно, служит гордостью и главнейшим достижением регенеративной медицины. В 2008 году он впервые в истории человечества выполнил операцию по пересадке пациентке трахеи, выращенной из ее собственных стволовых клеток на донорском каркасе в биореакторе. Через год была проведена феноменальная операция, когда орган был выращен внутри тела пациента без применения биореактора. В 2011 году профессором Маккиарини была проведена беспрецедентная операция по пересадке человеческого органа полностью созданного в лабораторных условиях на искусственном каркасе, когда донорские органы не использовались.

Первый визит Маккиарини в Россию состоялся в 2010 году. Фонд «Наука за продление жизни», пригласил его провести мастер – класс по регенеративной медицине. В этом же году профессор Маккиарини впервые в России осуществил пересадку трахеи молодой женщине, пострадавшей в результате автомобильной аварии и потерявшей возможность разговаривать и нормально дышать. Пациентка восстановила здоровье, а итальянский доктор продолжил развивать регенеративную медицину в нашей стране, постоянно внедряя что-то передовое. Например, вместе с искусственно выращенной трахеей человеку была пересажена часть гортани.

‑ Трудно представить, как можно воспроизвести орган автономно, в отсутствие человека?

‑ По большому счету этого сделать нельзя. Имея клетки взрослого человека, вырастить целый орган, не имея орган донора, или искусственный каркас, не удастся.

Как происходил процесс подготовки материала, когда все только начиналось? Получали донорский орган. Донором мог быть человек или животное, чаще всего свинья. Этот орган опускался в специальный раствор, где растворялись мышечные ткани, таким образом, освобождая его от генетического материала. В результате оставался только каркас из соединительной ткани. Каждый орган имеет каркас, позволяющий ему сохранять форму, так называемый внеклеточный матрикс. Хотя, полученный таким образом каркас органа, изъятого у свиньи, с иммунной системой человека не конфликтует, тем не менее, есть опасность случайного проникновения какого-нибудь вируса, а для мусульман этот вариант не приемлем по религиозным соображениям. Так что орган, изъятый у погибшего человека, для получения каркаса подходил больше.

В 2011 году была внедрена новейшая технология создания искусственного каркаса, позволяющая обходиться без доноров, в принципе. Этот каркас представляет собой трубку, выполненную в соответствии с индивидуальными размерами органа пациента, изготовленную из упругого и пластичного нанокомпозитного материала. Это колоссальный рывок вперед. Получая искусственный каркас, отпадает необходимость в донорах, и сразу же снимаются все вопросы биоэтики, особенно когда дело касается детей.

‑ Но трубка это же не орган. Как его оживить и заставить работать?

‑ Для этих целей существует биореактор.

‑ Что-то наподобие биопринтера?

‑ С помощью биопринтера можно произвести простые ткани или сосуды, но не сложные органы. Биореактор предназначен для размножения и роста клеток, для этого там поддерживаются оптимальные условия. Клетки в биореакторе обеспечиваются питанием, они имеют возможность дышать и оттуда отводятся продукты обмена. Из костного мозга пациента выделяются его собственные клетки, которые и засеваются на каркас. Стволовые клетки такого вида способны преобразоваться в специальные клетки требуемых органов. В течение двух суток каркас обрастает этими клетками, и затем, воздействуя на них определенным образом, клетки превращаются к трахейные. Орган для трансплантации готов, и так как он выращен из собственных клеток пациента, то организмом не отторгается.

‑ Но ведь вы не планируете останавливаться только на трахее?

‑ В настоящее время ведется работа по исследованию на животных пищевода и диафрагмы, выращенных в лаборатории. Далее планируется совместно с Техасским институтом впервые в мире вырастить функционирующее сердце.

В Краснодарском крае существует специальный обезьяний питомник, предназначенный для медицинских исследований. Именно на них планируется провести испытания первого синтетического сердца. Учитывая, что в России многие проблемы решаются значительно легче, чем на Западе или в Штатах, есть большая уверенность, что Россия станет родиной первого человеческого сердца, выращенного в лаборатории.

‑ А какие органы самые востребованные?

‑ Нет предела совершенству и человеческой глупости. Как иначе отнестись к просьбе какого-то там президента общества гомосексуалистов снабдить его пенисом?

‑ Два пениса – это мысль!

‑ Да в том-то и дело, что там не то, что два, вообще почему-то ни одного не было. Вот только в пенисах я не силен. Кстати, с маткой тоже не смог помочь. Людей ведь мучают не только болезни, а всякие бредовые идеи тоже жить спокойно не дают.

Наш центр не работает с этими новомодными тенденциями. Что пробовали, так это вырастить яички, потому что проблема эта весьма актуальна из-за огромного количества детей, у которых обнаружен рак яичек или имеются врожденные отклонения. Однако, стволовые клетки не удалось преобразовать в клетки яичек и исследования завершились безрезультатно.

Естественно, основные усилия нашего центра направлены на выращивание тех органов, пересадка которых поможет спасти максимальное количество людей. Вот сейчас один из самых актуальных проектов – выращивание диафрагмы. Тысячи детей появляются на свет с отсутствием этого органа и поэтому умирают.

‑ Какие органы представляют самую большую сложность при выращивании?

‑ Сложнее всего дела обстоят с сердцем, почками и печенью, и не потому, что их трудно вырастить. На сегодняшний день вырастить можно практически все органы, а вот как заставить их правильно работать и вырабатывать необходимые организму вещества, это пока вопрос. Искусственные органы прекращают функционировать через несколько часов. Мы не знаем досконально принцип их работы, в этом вся причина.

А ведь вполне возможно, что стволовые клетки можно использовать для восстановления работы органов, требующих пересадки. Запустить внутренние процессы регенерации организма. Сегодня – это моя самая заветная мечта, и если удастся реализовать эту фантастическую идею, не потребуются больше операции и выращивание органов, ведь стволовые клетки есть у каждого человека.

‑ Сколько требуется времени на создание синтетического органа?

‑ Время пропорционально сложности органа. Для трахеи достаточно четырех дней, для сердца понадобится три недели.

‑ А можно ли вырастить мозг?

‑ Есть у меня такие намерения в перспективе.

‑ Ведь мозг имеет бесчисленное множество связей между нейронами. Как с ними быть?

‑ Не так все сложно, просто на проблему нужно смотреть под другим ракурсом. Полностью заменить мозг нельзя, и об этом речи нет. Но, если у человека травма головы, часть мозга повреждена, но человек остался в живых. Вот эту неработающую часть мозга нужно заменить субстратом, который призван вызвать рост нейронов, привлекая их из других участков мозга. Через некоторое время пострадавшая часть мозга постепенно включится в работу и обрастет связями. Сколько бы людей смогли избавить от проблем!

Мечты и разочарования

‑ Как реагируют коллеги на ваши успехи?

‑ Это тема непростая и грустно о ней говорить. Когда человек делает то, чего никто никогда в мире не делал, его всегда ожидают неприятности. Должно пройти много времени, прежде чем что-то сделанное впервые начнет восприниматься адекватно. До этого все стремятся критиковать, причем довольно жестко, считая порой мои действия, чуть ли не безумством. Зачастую люди очень ревностно относятся к успеху коллег: на меня устраивали нападки, стремились создать условия невыносимые для работы, порой применяя весьма грязные методы.

‑ Что в вашей личной жизни и профессиональной деятельности создает самые большие трудности?

‑ Если взять мою личную жизнь, то ее просто не существует. Работа – это не самое сложное. Труднее справиться с постоянными нападками коллег, их неуемной ревностью. Отсутствие элементарного уважения, и чисто человеческих отношений безмерно угнетает. Такое впечатление, что в мире не существует ничего, кроме конкуренции. В научных журналах мною опубликованы десятки статей, но такое впечатление, что их никто не читает, продолжая заявлять об отсутствии доказательств наших результатов. Все кругом настроены только на критику абсолютно по любому поводу.

Именно эта ревность создает для меня основные трудности. Я постоянно ощущаю дикое давление со всех сторон. Очевидно, это участь всех первопроходцев. Но я знаю, что мы спасем жизни людей и готов выдержать ради этого любые нападки.

‑ У вас есть мечта?

‑ Что касается моей личной жизни, то я мечтаю взять свою любимую собаку, забраться в лодку и уплыть на необитаемый остров, чтобы ничего не напоминало об этом мире. Что касается работы, то мечтаю спасать людей, не прибегая к операции, а лишь используя клеточную терапию. Вот это было бы, действительно, фантастикой!

‑ Когда технология создания искусственных органов станет доступна большинству населения развитых стран?

‑ Что касается трахеи, то технология выращивания этого органа практически доведена до совершенства. Если клинические испытания на Кубани будут продолжены, то через пару лет соберется достаточно фактов, доказывающих безопасность и эффективность разработанных нами методов, и их начнут применять повсеместно. Многое зависит от количества пациентов и ряда других факторов. Я продолжу разработки, связанные с выращиванием диафрагмы, пищевода и сердца. Надеюсь, что в России все пойдет значительно быстрее, так что немного терпения и скоро все узнаете сами.

В результате проведения четырех конкурсов, нацеленных на привлечение в российские вузы известных ученых мирового масштаба, 163 зарубежных и отечественных специалистов выиграли мегагранты, выделенные правительством России.

ВВЕДЕНИЕ В КЛИНИЧЕСКУЮ ТРАНСПЛАНТОЛОГИЮ

Начиная краткий обзор трансплантологических методов лече­ния больных, приведем сообщение, датированное 1993 г (Нью-Йорк): "В одной из клиник США проведена уникальная хирургическая опера­ция - пятилетней английской девочке Лоре Дейвис пересадили печень, желудок, почки, поджелудочную железу и часть кишечника. Необхо­димость в столь сложной операции возникла в связи с тем, что девочка родилась с врожденным пороком органов пищеварения. В июне про­шлого года ей пересадили часть кишечника и печень. Однако летом этого года началась реакция отторжения организмом пересаженных органов....". Указанное сообщение показывает, что в настоящее время клиническая трансплантология, опережая самые смелые фантастиче­ские мысли, прочно вошла в практику лечения ранее обреченных па­циентов.

Понятие о трансплантологии как о науке. Трансплантология - это наука о пересадках органов и тканей. Успехи трансплантологии, опирающиеся на достижения современной научно-технической рево­люции, получили признание общественности и практических врачей. Наиболее фко об этом свидетельствует накопленный к настоящему времени опыт пересадок почки, сердца, печени и применения искусст­венных устройств для поддержания функции жизненно важных орга­нов. При этом аутотрансплантацией считают пересадку собственной ткани (или органа) в другую позицию (например - аутотрансплантация пальцев или кожи). Изотрансплантация предполагает пересадку между двумя генетически идентичными орга­низмами (однояйцевыми близенецами). Подобные операции очень редки. Гомотрансплантация (аллотрансплантация) - это трансплантация органа или ткани от одного человека другому. Гетеротрансплантация (ксенотрансплантация) означает пересадку от животных человеку с применением ксеногенного органа или ткани.

Донор - это человек, у которого забирают орган (или ткань) для последующей операции трансплантации. Рецепиент - человек, которому имплантируют донорский орган (или ткань).

Донорский орган при трансплантации может быть инплантирован как в ортотопическую (прежнюю) или гетеротопическую (на дру­гое место) позицию.

Трансплантология выкристаллизовалась из хирургии и в совре­менном понятии основной деятельностью трансплантологов является хирургическая, но с многими специфическими особенностями, включающими иммунологический подбор рецепиентов и доноров; решение вопросов иммуносупрессии и вторичной инфекции; забора, транспор­тировки и временной консервации органов и тканей, а также ряд дру. гих важных проблем, в том числе и временного поддержания функции больных до операции (и в последствии трансплантированных после операции) органов при помощи искусственных систем.

Создание искусственных органов находится в числе основных направлений современной науки и решается на стыке биологических, медицинских и точных наук. Под искусственными органами принято понимать «устройства, предназначенные для постоянной или временной активной замены функции природного прототипа (В.И.Шумаков, 1990). Необходимость разработки искусственных органов обусловлена возможностью временного замещения утраченной функции природного прототипа, тем более, что хирургическая служба пересадки органов от доноров не может полностью обеспечить каждого больного из-за дефицита самих донорских органов.

Последние 20 лет отмечены бурным развитием трансплантолс гии, при этом советские ученые и медики внесли существенный вклад в развитие данной науки. Прежде всего этому способствовало решение технологических задач для создания биологически инертных материа­лов, способных не изменять своих свойств со временем, не вызывать тромбов и воспалительных реакций.

Особое значение в решении указанной задачи сыграла разработ­ка экспресс-методов оценки гемосовместимости, токсичности и других качественных характеристик полимеров.

Значительное значение в развитии науки об искусственных ор­ганах имели разработки в области вспомогательного кровообращения, создания различных моделей искусственного сердца; совершенствова­нии биологических и полимерно-металлических конструкций клапанов сердца; новых моделей дозаторов лекарственных веществ и электро­стимуляторов; разработку и серийный выпуск фракционаторов крови, гибридных перфузионных систем и совершенствование устройств для детоксикации и модификации крови (гемосорбции, обменного грави­тационного и фильтрационного плазмафереза, ультрафильтрации и гемодиализа). Все это позволило оценить данное направление меди­цинской науки как приорететное и требующее дальнейших изысканий.

История трансплантологии и роль отечественных ученых.

История трансплантологии насчитывает многовековой период. Еще в Аюрведе (древнем индийском трактате о способах лечения) имеется упоминание в факте пересадки нижней конечности от негра белому человеку. Данное сообщение свидетельствует о необычайной смелости врачей-хирургов и о том, что уже в древние времена мысли о возмож­ной замене больного органа на здоровый занимали умы медиков.

История научной трансплантологии началась в XIX веке. Мно­гие десятилетия эта наука плодотворно развивалась в рамках хирур­гии. Наибольший вклад в развитие трансплантологии внесли хирурги, особенно из тех, кто занимался восстановительной и пластической хирургией. К числу таких исследователей и клиницистов относят Эри­ха Лексера. В частности, данный хирург занимался вопросами свобод­ной пересадки костей от трупа больным пациентам и разрабатывал методы аллотрансплантации суставов. В 1907 году в Кенигсберге Лексер выполнил первую в мире успешную клиническую аллотрансплантацию сустава. Лексер занимался также трансплантациями сосудов, а именно вен; а также сухожилий; фасций и жировой ткани. В периоде 1914-1924 он издал 2-томное руководство "Свободные транспланта­ции". Это издание долгие годы было на вооружении трансплантологов и хирургов.

Русский ученый профессор С.В. Шамов не без оснований назы­вал переливание крови пересадкой крови. Ведь действительно, в дан­ном случае ткань одного человека (кровь) вводится другому, то есть имеет место гомологическая трансплантация.

Основные положения теории трансплантационного иммунитета разработал наш соотечественник И.И.Мечников.

В 1929 году видный русский ученый С.С.Брюхоненко на съезде патофизиологов впервые в мире демонстрировал аппарат («автожектор»), предназначенный для оксигенации и нагнетания крови. При этом изолированная от туловища голова собаки, перфузируемая согре­той и оксигенированной кровью сохраняла рефлексы, лакала воду и пыталась лаять. Для того времени это был гигантский скачок вперед, позволивший создать в скором времени аппараты для искусственного кровообращения и по сути дела открыть этап операций на "сухом" сердце.

Нельзя не вспомнить о великом исследователе и эксперимента­торе, нашем современнике В.П. Демихове, работы которого по пере­садке сердца, комплекса "сердце-легкие", создании банка органов, аортокоронарном шунтировании, а также гемикорпорэктомии с после­дующей трансплантацией туловища являются классикой в трансплан­тологии. Полученные отечественным ученым результаты послужили путеводной вехой клинической пересадки указанных органов. В.П. Демиховым еще в 1960 г показана принципиальная возможность под­держания кровообращения в организме животного с помощью механического устройства, имплантированного на место удаленного собст­венного сердца. После такой операции собака жила в течение 2,5 ча­сов. Хирург Барнард (ЮАР), впервые выполнивший клиническую пе­ресадку сердца, и другие видные исследователи считали В.П. Демихова своим учителем.

Первую в мире клиническую пересадку почки выполнил в Кие­ве в апреле 1933 года отечественный хирург Ю.Ю.Вороной. Почку от трупа в 1965 году первым в Союзе пересадил академик Б.В.Петровский.

Все изложенное выше свидетельствует о большом пути, прой­денном экспериментальной и клинической трансплантологией, о вкла­де многих и многих исследователей и о существенной роли отечест­венных ученых в развитие науки о методах пересадки органов и тка­ней.

К настоящему времени уже сделано большое число самых раз­ных трансплантаций, позволивших спасти жизнь и улучшить ее каче­ство многим тысячам больных. В таблицах 1 и 2 приведена сводная статистика о числе и результатах данных операций.

Рекорды международной выживаемости трансплантатов (1992 г)

Приведенные в таблицах 1 и 2 данные убедительно свидетель­ствуют о возрастающем интересе хирургов к трансплантологиии о су­щественном позитивном вкладе данной науки в сохранении жизни и здоровья населения планеты.

Забор органов, проблема "смерти мозга", иммуносупрессия.

В числе ведущих медико-биологических "нехирургических" проблем в трансплантологии находятся проблемы, связанные со смер­тью мозга, сроками и способами забора органов и тканей, иммуноло­гическим подбором пары "донор-рецепиент" и последующей иммуно­логической супрессией.

Необходимо отметить, что имеются определенные ограничения забора органов со стороны доноров. При отсутствии таковых донорами могут быть люди, в возрасте от 5 до 50 лет. К ним относятся:

Изолированная черепно-мозговая травма.

Разрыв аневризмы сосудов головного мозга.

Некоторые заболевания головного мозга.

Суицидные попытки.

Отравление барбитуратами.

При этом доноры не должны страдать хроническими органиче­скими заболеваниями жизненно важных органов или инфекционной патологией.

Не вдаваясь глубоко в данные проблемы, отметим, что термин "смерть мозга" является не только медицинским, но и общефилософ­ским понятием. Вплоть до недавнего времени (до 1993 г) советские трансплантологи не имели юридической базы для изъятия органов у больных при гибели коры головного мозга и работающем сердце. Это создавало целый ряд серьезных препятствий для пересадки сердца, легкого, почки и печени. В самом деле, ранее считали, что если бьется сердце, то человек жив и изымать его органы - это преступление. В настоящее время в большинстве развитых стран мира принято, что в тех ситуациях, когда зафиксирована гибель коры головного мозга и неблагоприятный прогноз становится ясным, возможно использовать функционирующие органы больного для спасения жизни других лю­дей.

В настоящее время критериями смерти мозга счи­тают прямую линию на энцефалограмме; отрицательные атропиновый тест и тест с насыщением крови кислородом; отсутствие нистагма при раздражении слухового канала водой. Данные положения совпадают с международными требованиями и защищены соответствующим зако­нодательством. В России органное донорство регулируется двумя законами - Законом «О трансплантации органов и (или) тканей челове­ка», принятом 22 декабря 1992 г.. и Законом «О погребении и похо­ронном деле», принятом 8 декабря 1995 г. В совокупности они допус­кают изъятие органов у трупов при согласии родственников или их законных представителей или при их отсутствии, как это бывает при гибели неизвестных лиц.

В специализированных учреждениях имеются функциональные подразделения, ответственные за выявление, типирование и забор ор­ганов - так называемые центры забора. Центры являются ко­ординационной структурой, определяющей и реализующей тактику получения донорских трансплантатов с их иммунологической селек­цией и распределением на основе "листа ожидания". Такие центры обладают опытом обмена донорскими органами подобными структу­рами в США, Израиле, Германии, Англии и других странах. Вся рабо­та в них ведется в режиме круглосуточного дежурства, а сами трансплантологические операции носят характер экстренных, ввиду ограни­ченных временных сроков хранения донорских органов.

Современная схема забора органов предусматривает следую­щее: оповещение о больном со смертью мозга; экспресс обследование на месте бригадой трансплантологов и изъятие на месте (почка) или транспортировку донора в трансплантологический центр (сердце, лег­кие и др). Как правило, стараются применить схему полиорганного забора (рис.1) с последующим типированием иммунологических пока­зателей и оповещением нескольких подходящих рецепиентов, находя­щихся в листе ожидания.

ßРис. 1. Схема мультиорганного забора органов.

При отсутствии таких больных в известность ставят другие трансплантологические центры у нас в стране и за рубежом. При этом очень важен фактор времени, так как результаты пересадок сущест­венно зависят от сроков ишемии и консервации донорских органов.

В настоящее время подбор донора осуществляется по двум ос­новным системам антигенов: АВО (антигены эритроцитов) и HLA (ан­тигены лейкоцитов или антигены гистосовместимости).

Иммуносупрессивная терапия после трансплан­тации - это основа консервативного лечения. При подавлении трансплантологического иммунитета длительное время использовали гор­моны - преднизолон и стероидные препараты. Разработки последних 20 лет позволили внедрить новые фармакологические средства, су­прессивное действие которых существенно выше, а побочные эффекты (цитотоксичность, гормональные язвы, артериальная гипертензия, сеп­сис) ниже. Таким препаратом, например, является циклоспорин "А", созданный фирмой "Сандос" (Швейцария). По структуре - это метабо­лит некоторых низших грибов, обладающий иммунодепрессивным действием без миелотоксичных реакций. Циклоспорин "А" предот­вращает распознавание антигена лимфоцитами, которые не превраща­ются в цитотоксичные киллеры. Введение в 80-х годах в клиническую практику данного препарата имело революционный характер и почти повсеместно увеличило выживаемость трансплантатов на 15-20%. Од­нако к настоящему времени выявлены и отрицательные побочные дей­ствия циклоспорина "А" - гепато- и нефротоксичность, а также увели­чение частоты вирусных инфекций у рецепиентов.

Следует отметить, что применение циклоспорина "А " мало по­влияло на лечение кризов отторжения - самых опасных иммунологиче­ских состояний, обусловленных несовместимостью антигенных струк­тур пары "донор-рецепиент". В данном случае применяют моноклональные антитела, стероидные гормоны, антимоноцитарный глобулин и обменный плазмаферез. К другим фармакологическим препаратам, подавляющим трансплантационный иммунитет являются азатиоприн, ортоклон и антилимфоцитарные сыворотки.

Изложенное свидетельствует о значительной специфике лече­ния трансплантологических больных, что требует специальных много­профильных знаний.

Помимо чисто хирургических причин неблагоприятных исходов (кровотечения; несостоятельность соустий, интраоперационная эмбо­лия, сердечная слабость, травматический шок и другие) в трансплан­тологии, наиболее частыми осложнениями являются острое отторже­ние органа; нежизнеспособность трансплантата; сепсис; сердечно-сосудистая недостаточность и синдром взаимного отягощения с нару­шением функции нескольких жизненноважных органов.

Частная трансплантология

С е р д ц е. В эксперименте первую пересадку сердца, как указывалось ранее, осуществил отечественный ученый, хирург-трансплантолог В.П.Демихов в 50-х годах.

Пересадка сердца у больного впервые выполнена К.Барнардом из ЮАР (1967 г). Пациент после операции прожил 16 суток. С этой поры открыта новая важная веха лечения больных с необратимыми и несовместимыми с жизнью нарушениями структуры и функции серд­ца.

В СССР первая трансплантация сердца сделана А.В.Вишневским (больной после операции прожил 33 часа). Успешная пересадка сердца осуществлена академиком РАН профессором В.И.Шумаковым в 1986 году. Всего за период с 1986 по 2001 год толь­ко в НИИ трансплантологии и искусственных органов РАМН выпол­нено 99 пересадок этого органа. Данные операции проведены также в ВНЦХ РАМН, а также в Вильнюсе. Таким образом, можно уже гово­рить о завершении этапа отработок и о запуске их "на поток".

Показаниями к ортотопической трансплантации сердца считают тяжелую хроническую недостаточность кровообращения, ре­зистентную к медикаментозной терапии (дилатационная кардиомиопатия; ИБС и др.).

Противопоказаниями к данной операции считают ле­гочную гипертензию выше 50 мм рт.ст.; хронические заболевания по­чек; печени; желудочно-кишечные заболевания; болезни перифериче­ских сосудов и крови, а также злокачественные опухоли.

Забор сердца может быть дистанционный (в лечебном учрежде­нии, где находится донор) или в учреждении, где планируется опера­ция пересадки. В ряде ситуаций перед пересадкой сердца используют разные варианты подключения вспомогательного кровообращения или искусственного имплантируемого сердца в целях продления жизни рецепиенту и для поиска необходимого донорского сердца.

Основными осложнениями после пересадки сердца являются острая (чаще правожелудочковая) сердечная недостаточность и острые кризы отторжения. Частота инфекционных осложнений достигает 12-16%. Пересадка сердца осуществляется в ортотопическую позицию.

В нашей стране к настоящему времени успешных пересадок комплекса "сердце-легкие" в настоящее время нет. Показаниями к данной операции служат грубые, несовместимые с жизнью сочетанные поражения сердца и легких.

Почка. Пересадку почки на заре развития метода начинали осуществлять от живых родственников. В последующем (и по настоя­щее время) применять стали пересадку трупной почки с давностью тепловой ишемии не более суток.

Из истории вопроса о пересадке почки известно, что первую пе­ресадку этого органа в эксперименте выполнена Каррелем и Ульманом (1902). В 1934 году отечественным хирургом Вороным сделана первая попытка трансплантации почки больной при острой почечной недоста­точности. В 1953 г Хьюм сделал первую в мире успешную клиниче­скую трансплантацию почки от родственного донора.

В настоящее время в России ежегодно почку пересаживают около 700 пациентов (в странах Европы - около 10000).

К настоящему времени наиболее перспективна пересадка почки, которую забрали в процессе мультиорганного забора при смерти моз­га. Пересадка почки - наиболее разработанный аспект проблемы кли­нической трансплантологии. Как свидетельствует табл. 1 и табл.2 сей­час имеются тысячи больных с пересаженными почками, у которых сроки выживания трансплантатов вполне удовлетворительны. В тех­ническом отношении современное решение места пересадки почки - это пересадка к внутренним подвздошным сосудам с анастомозом мо­четочника и мочевого пузыря. По числу реимплантаций к настоящему времени есть пациенты с 3-5 пересадками почек. Следует помнить, что до 40-50% почечных трансплантатов гибнет в течение 1-го года после операции.

Показаниями к пересадке почки в настоящее время счи­тают терминальную стадию хронической почечной недостаточности (ХПН) разной причины (хронический гломерулонефрит, хронический пиелонефрит, поликистоз почек, мочекаменную болезнь с исходом в гидронефроз и др.). Следует отметить, что трансплантацию почки осуществляют в гетеротопическую позицию на подвздошные сосуды.

Печень. Первая ортотопическая пересадка печени осуще­ствлена профессором Старлзом в 1963 году. В СССР первую ортотопическую трансплантацию печени выполнили в 1990 году больной с гепатоцеллюлярным раком печени. Из показаний к пересадке данного органа наибольшую группу составляют пациенты с циррозом и раком печени. Операция по срокам составляет 12-16 часов. Объем гемотрансфузий за время операции и после нее может достигать 12-15 лит­ров крови при общем объеме трансфузий - до 30 литров. В периоде операции, наряду с чисто хирургическими задачами, решаются проблемы вено-венозного перфузионного обхода печени (рис.2), трансфузиологии и анестезиологического пособия.

ß Рис.2. Схема перфузионного обхода печение при ее пересадке.

Показаниями к пересадке печени являются цирроз, пер­вичный рак печени, склерозирующии холангит, атрезия желчевыводящих путей и другие заболевания.

Абсолютным противопоказанием к пересадке пече­ни считают сепсис вне билиарной системы; метастатические пораже­ния вне печени; активный алкоголизм; выраженную гипоксию; несо­гласие больного или родственников на операцию; прогрессирующие сердечно-легочные заболевания; СПИД. При этом основную группу рецепиентов составляют больные с циррозом и с раком печени.

Поджелудочная железа . Если хирургические аспекты пересад­ки сердца, комплекса сердце-легкие; почки и печени уже решены, то нельзя сказать то же самое о пересадке поджелудочной железы. Пер­вую пересадку этого органы выполнили в 1966 году Келли и Лиллехай. К настоящему времени в мире осуществлено свыше 10000 трансплан­таций.

При этом возможны как ортотопическая (с сохранением экзокринной функции), так и гетеротопическая (с прекращением экзокринной функции) железы. В ряде случаев используют пломбировку про­токов полимеризующимися смесями. Наиболее перспективна пересад­ка железы с анастомозом площадки 12-перстной кишки с большим дуоденальным сосочком - с одной стороны, и кишечником или моче­вым пузырем - с другой.

Достаточно перспективным считают трансплантации клеточных структур и тканей (костного мозга, островкового аппарата поджелу­дочной железы, печени, надпочечников, селезенки и др.).

ИСКУССТВЕННЫЕ ОРГАНЫ

Полимеры медицинского назначения. В конце 70-х го­дов, в связи с широким внедрением в практику здравоохранения аппа­ратов для искусственного кровообращения и гемодиализа, а также им­плантируемых устройств, резко возросло число публикаций, посвя­щенных разработке и исследованию гемосовместимых полимеров и заданным комплексом физико-химических и медико-биологических свойств.

Необходимость в полимерных материалах медицинского назна­чения подтверждается данными долгосрочного прогнозирования ис­пользования искусственных органов в мире в 1990 г, по сравнению с 1980 г, сделанном департаментом науки и техники Японии. Так, по­требность в биоматериалах возрасла для изготовления костей и суста­вов - в 1,3 раза; кровеносных сосудов - в 3,2; аппаратов "сердце-легкие" - в 2,3; клапанов сердца - в 3,0; водителей ритма сердца - в 1,5; искусственных почек - в 2,2; аппаратов вспомогательного кровообра­щения (искусственный желудочек сердца) - в 3,3 раза. В среднем предполагаемый ежегодный прирост производства изделий для сер­дечно-сосудистой хирургии до 1990 года составит 10-15%.

Таким образом, важность данного аспекта и его перспектива в трансплантологии сомнению не подлежит.

Искусственное сердце. Концепция замещения функ­ции сердца механическим аналогом не нова. Еще в 1812 году la Gallois заметил, что если удастся заместить сердце каким-либо насосом крови, то можно успешно сохранить живой любую часть тела. Первые успешные экспериментальные исследования по имплантируемому сердцу выпонены W.Kolff (1980). Полученные результаты позволили считать, что метод замены собственного сердца искусственным, как временная мера, может быть применен в клинике. К настоящему времени в мире проведено свыше 50 операций в клинике, где имплантация искусственного сердца явилась временной мерой для сохранения жизни пациенту. В 1/3 клинических наблюдений имплан­тация искусственного сердца была первым этапом операции с после­дующей заменой насоса трансплантатом.

Вспомогательное кровообращение. В лече­нии острой сердечной недостаточности различного генеза, которая резистента к применению фармакологических препаратов большое значение придают методам вспомогательного кровообращения.

Поскольку основным воздействием вспомогательного кровооб­ращения является влияние его на метаболизм сердечной мышцы, этот показатель и положен в основу классификации методов вспомогатель­ного кровообращения:

1- методы, улучшающие метаболизм миокарда за счет снижения постнагрузки - методы контрпульсации;

2- методы, улучшающие метаболизм за счет уменьшения преднагрузки - методы шунтирования;

3- методы, улучшающие метаболизм за счет уменьшения конечно-диастолического объема - кардиомассаж и внутрижелудочковое вспомогательное кровообращение;

4 - методы, улучшающие непосредственно коронарную перфу­зию - ретроградная перфузия и окклюзия коронарного синуса, перфу­зия коронарных артерий.

Для использования вспомогательного кровообращения приме­няют различные устройства - насосы (мембранные, роликовые, желу­дочковые; турбинные) (рис.3.4,5); баллончик Брегмана (рис.6.) с датаскопом - синхронизатором пневмопривода с фазами работы сердца; пластиковые приспособления на конечности и грудную клетку при наружней контрпульсации; различные катетеры с окклюзионными манжетками и устройством для оксигенации крови и т.д.

ßРис.3. Вспомогательное кровообращение с применением искусственного желудочка сердца.

Рис.4. Возможные локализации подключения искусственных желу­дочков сердца для вспомогательного кровообращения.

ß Рис.5. Разрез искусственного желудочка сердца:1-клапан входа крови; 2-клапан выхода крови; 3-пневмопривод; 4-камера крови; 5-воздушная камера.

Рис.6. Места введения баллончика Брегмана для вспомогательного кровообращения.

Для вспомогательного кровообращения могут использоваться также имплантируемые системы как полностью автономные, так и частично автономные.

Применение искусственной оксигенации крови при гипоксиях, в частности при критических состояниях различного генеза, является чрезвычайно важной проблемой медици­ны. Лечение острой гипоксии чаще всего связывают с различными режимами искусственной вентиляции (ИВЛ) легких (собственно гово­ря их протезированием), реже - с применением гипербарической окси­генации. Однако, в ряде клинических ситуаций использование указан­ных методов явно недостаточно. В случае острой дыхательной недос­таточности применяют внелегочные пути и устройства для экстра­корпоральной оксигенации крови - чаще речь идет о м е м б р энной оксигенации. Принцип действия данных приборов заключается в использовании полунепроницаемых мембран, с одной стороны которых протекает кровь, с другой - подается газ под давле­нием. При этом кислород диффундирует в кровь, а из крови элимини­руется углекислая кислота. Оксигенация не менее 1/3 минутного вы­броса сердца с помощью этого экстракорпорального устройства, под­ключенного к периферическим сосудам, позволяет заместить на время до 3-х суток оксигенирующую функцию легких. В этом периоде воз­можно провести ряд мер интенсивного лечения больных и добиться успеха.

Мембранные оксигенаторы могут быть применены также при операциях на открытом сердце в сочетании с искусственным кровооб­ращением. В данном случае они более предпочтительтны (особенно при длительных перфузиях) перед другими конструкциями оксигена­торов - пузырьковыми; пено-пленочными и др.

Важным направлением клинического применения мембранных оксиненаторов служат гибридные перфузионные системы и изолиро­ванные перфузии цельных органов, например селезенки.

В случае поражения функции печени и почек применяют искус­ственные перфузионные системы, временно замещающие функцию жизненноважных органов типа гибридных систем (с применением жи­вых изолированных гепатоцитов) (Рис.7,8); гемосорбции и обменного плазмафереза; гемодиализа. Принцип действия этих устройств разли­чен, тем не менее из организма при помощи указанных устройств уда­ется вывести токсичные и балластные субстанции и тем самым обес­печить условия жизни пациенту.

При наличии у больного некорригируемого инсулином сахарно­го диабета могут быть использованы: подсадка клеток инсулярного аппарата, выделенных или полученных при культивации; аппарат типа "Биостатор" с обратной связью для коррекции в реальном режиме вре­мени уровня сахара в крови; паракорпоральные и имплантируемые дозаторы инсулина.

Таким образом, приведенные данные о результатах многих ме­дикотехнических и клинических проблем науки о трансплантологии и искусственных органах убедительно свидетельствуют о успехах лече­ния самых тяжелых больных различного профиля, а также о множест­ве имеющихся нерешенных проблем. Все это диктует необходимость поиска решений и развития данной науки.

Искусственные органы человека

Современная медицинская техника позволяет заменять полностью или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы – вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

Во время сложнейших операций, проводимых на сердце, легких или почках, неоценимую помощь медикам оказывают «Аппарат искусственного кровообращения», «Искусственное легкое», «Искусственное сердце», «Искусственная почка», которые принимают на себя функции оперируемых органов, позволяют на время приостановить их работу.

«Искусственное легкое» представляет собой пульсирующий насос, который подает воздух порциями с частотой 40-50 раз в минуту. Обычный поршень для этого не подходит: в ток воздуха могут попасть частички материала его трущихся частей или уплотнителя. Здесь и в других подобных устройствах используют мехи из гофрированного металла или пластика – сильфоны. Очищенный и доведенный до требуемой температуры воздух подается непосредственно в бронхи.

«Аппарат искусственного кровообращения» устроен аналогично. Его шланги подключаются к кровеносным сосудам хирургическим путем.

Первая попытка замещения функции сердца механическим аналогом была сделана еще в 1812 году. Однако до сих пор среди множества изготовленных аппаратов нет полностью удовлетворяющего врачей.

Отечественные ученые и конструкторы разработали ряд моделей под общим названием «Поиск». Это четырехкамерный протез сердца с желудочками мешотчатого типа, предназначенный для имплантации в ортотопическую позицию.

В модели различают левую и правую половины, каждая из которых состоит из искусственного желудочка и искусственного предсердия.

Составными элементами искусственного желудочка являются: корпус, рабочая камера, входной и выходной клапаны. Корпус желудочка изготавливается из силиконовой резины методом наслоения. Матрица погружается в жидкий полимер, вынимается и высушивается – и так раз за разом, пока на поверхности матрицы не создается многослойная плоть сердца.

Рабочая камера по форме аналогична корпусу. Ее изготавливали из латексной резины, а потом из силикона. Конструктивной особенностью рабочей камеры является различная толщина стенок, в которых различают активные и пассивные участки. Конструкция рассчитана таким образом, что даже при полном напряжении активных участков противоположные стенки рабочей поверхности камеры не соприкасаются между собой, чем устраняется травма форменных элементов крови.

Российский конструктор Александр Дробышев, несмотря на все трудности, продолжает создавать новые современные конструкции «Поиска», которые будут значительно дешевле зарубежных образцов.

Одна из лучших на сегодня зарубежных систем «Искусственное сердце» «Новакор» стоит 400 тысяч долларов. С ней можно целый год дома ждать операции.

В кейсе-чемоданчике «Новакора» находятся два пластмассовых желудочка. На отдельной тележке – наружный сервис: компьютер управления, монитор контроля, который остается в клинике на глазах у врачей. Дома с больным – блок питания, аккумуляторные батареи, которые сменяются и подзаряжаются от сети. Задача больного – следить за зеленым индикатором ламп, показывающих заряд аккумуляторов.

Аппараты «Искусственная почка» работают уже довольно давно и успешно применяются медиками.

Еще в 1837 году, изучая процессы движения растворов через полупроницаемые мембраны, Т. Грехен впервые применил и ввел в употребление термин «диализ» (от греческого dialisis – отделение). Но лишь в 1912 году на основе этого метода в США был сконструирован аппарат, с помощью которого его авторы проводили в эксперименте удаление салицилатов из крови животных. В аппарате, названном ими «искусственная почка», в качестве полупроницаемой мембраны были использованы трубочки из коллодия, по которым текла кровь животного, а снаружи они омывались изотоническим раствором хлорида натрия. Впрочем, коллодий, примененный Дж. Абелем, оказался довольно хрупким материалом и в дальнейшем другие авторы для диализа пробовали иные материалы, такие как кишечник птиц, плавательный пузырь рыб, брюшину телят, тростник, бумагу.

Для предотвращения свертывания крови использовали гирудин – полипептид, содержащийся в секрете слюнных желез медицинской пиявки. Эти два открытия и явились прототипом всех последующих разработок в области внепочечного очищения.

Каковы бы ни были усовершенствования в этой области, принцип пока остается одним и тем же. В любом варианте «искусственная почка» включает в себя следующие элементы: полупроницаемая мембрана, с одной стороны которой течет кровь, а с другой стороны – солевой раствор. Для предотвращения свертывания крови используют антикоагулянты – лекарственные вещества, уменьшающие свертываемость крови. В этом случае происходит выравнивание концентраций низкомолекулярных соединений ионов, мочевины, креатинина, глюкозы, других веществ с малой молекулярной массой. При увеличении пористости мембраны возникает перемещение веществ с большей молекулярной массой. Если же к этому процессу добавить избыточное гидростатическое давление со стороны крови или отрицательное давление со стороны омывающего раствора, то процесс переноса будет сопровождаться и перемещением воды – конвекционный массообмен. Для переноса воды можно воспользоваться и осмотическим давлением, добавляя в диализат осмотически активные вещества. Чаще всего с этой целью использовали глюкозу, реже фруктозу и другие сахара и еще реже продукты иного химического происхождения. При этом, вводя глюкозу в больших количествах, можно получить действительно выраженный дегидратационный эффект, однако повышение концентрации глюкозы в диализате выше некоторых значений не рекомендуется из-за возможности развития осложнений.

Наконец, можно вообще отказаться от омывающего мембрану раствора (диализата) и получить выход через мембрану жидкой части крови: вода и вещества с молекулярной массой широкого диапазона.

В 1925 году Дж. Хаас провел первый диализ у человека, а в 1928 году он же использовал гепарин, поскольку длительное применение гирудина было связано с токсическими эффектами, да и само его воздействие на свертывание крови было нестабильным. Впервые же гепарин был применен для диализа в 1926 году в эксперименте Х. Нехельсом и Р. Лимом.

Поскольку перечисленные выше материалы оказывались малопригодными в качестве основы для создания полупроницаемых мембран, продолжался поиск других материалов, и в 1938 году впервые для гемодиализа был применен целлофан, который в последующие годы длительное время оставался основным сырьем для производства полупроницаемых мембран.

Первый же аппарат «искусственная почка», пригодный для широкого клинического применения, был создан в 1943 году В. Колффом и Х. Берком. Затем эти аппараты усовершенствовались. При этом развитие технической мысли в этой области вначале касалось в большей степени именно модификации диализаторов и лишь в последние годы стало затрагивать в значительной мере собственно аппараты.

В результате появилось два основных типа диализатора, так называемых катушечных, где использовали трубки из целлофана, и плоскопараллельных, в которых применялись плоские мембраны.

В 1960 году Ф. Киил сконструировал весьма удачный вариант плоскопараллельного диализатора с пластинами из полипропилена, и в течение ряда лет этот тип диализатора и его модификации распространились по всему миру, заняв ведущее место среди всех других видов диализаторов.

Затем процесс создания более эффективных гемодиализаторов и упрощения техники гемодиализа развивался в двух основных направлениях: конструирование самого диализатора, причем доминирующее положение со временем заняли диализаторы однократного применения, и использование в качестве полупроницаемой мембраны новых материалов.

Диализатор – сердце «искусственной почки», и поэтому основные усилия химиков и инженеров были всегда направлены на совершенствование именно этого звена в сложной системе аппарата в целом. Однако техническая мысль не оставляла без внимания и аппарат как таковой.

В 1960-х годах возникла идея применения так называемых центральных систем, то есть аппаратов «искусственная почка», в которых диализат готовили из концентрата – смеси солей, концентрация которых в 30-34 раза превышала концентрацию их в крови больного.

Комбинация диализа «на слив» и техники рециркуляции была использована в ряде аппаратов «искусственная почка», например американской фирмой «Travenol». В этом случае около 8 литров диализата с большой скоростью циркулировало в отдельной емкости, в которую был помещен диализатор и в которую каждую минуту добавляли по 250 миллилитров свежего раствора и столько же выбрасывали в канализацию.

На первых порах для гемодиализа использовали простую водопроводную воду, потом из-за ее загрязненности, в частности микроорганизмами, пробовали применять дистиллированную воду, но это оказалось очень дорогим и малопроизводительным делом. Радикально вопрос был решен после создания специальных систем по подготовке водопроводной воды, куда входят фильтры для ее очистки от механических загрязнений, железа и его окислов, кремния и других элементов, ионообменные смолы для устранения жесткости воды и установки так называемого «обратного» осмоса.

Много усилий было затрачено на совершенствование мониторных систем аппаратов «искусственная почка». Так, кроме постоянного слежения за температурой диализата, стали постоянно наблюдать с помощью специальных датчиков и за химическим составом диализата, ориентируясь на общую электропроводность диализата, которая меняется при снижении концентрации солей и повышается при увеличении таковой.

После этого в аппаратах «искусственная почка» стали применять ионо-селективные проточные датчики, которые постоянно следили бы за ионной концентрацией. Компьютер же позволил управлять процессом, вводя из дополнительных емкостей недостающие элементы, или менять их соотношение, используя принцип обратной связи.

Величина ультрафильтрации в ходе диализа зависит не только от качества мембраны, во всех случаях решающим фактором является трансмембранное давление, поэтому в мониторах стали широко применять датчики давления: степень разрежения по диализату, величина давления на входе и выходе диализатора. Современная техника, использующая компьютеры, позволяет программировать процесс ультрафильтрации.

Выходя из диализатора, кровь попадает в вену больного через воздушную ловушку, что позволяет судить на глаз о приблизительной величине кровотока, склонности крови к свертыванию. Для предупреждения воздушной эмболии эти ловушки снабжают воздуховодами, с помощью которых регулируют в них уровень крови. В настоящее время во многих аппаратах на воздушные ловушки надевают ультразвуковые или фотоэлектрические детекторы, которые автоматически перекрывают венозную магистраль при падении в ловушке уровня крови ниже заданного.

Недавно ученые создали приборы, помогающие людям, потерявшим зрение – полностью или частично.

Чудо-очки, например, разработаны в научно-внедренческой производственной фирме «Реабилитация» на основе технологий, использовавшихся ранее лишь в военном деле. Подобно ночному прицелу, прибор действует по принципу инфракрасной локации. Черно-матовые стекла очков на самом деле представляют собой пластины из оргстекла, между которыми заключено миниатюрное локационное устройство. Весь локатор вместе с очковой оправой весит порядка 50 граммов – примерно столько же, сколько и обыкновенные очки. И подбирают их, как и очки для зрячих, строго индивидуально, чтобы было и удобно, и красиво. «Линзы» не только выполняют свои прямые функции, но и прикрывают дефекты глаз. Из двух десятков вариантов каждый может выбрать для себя наиболее подходящий.

Пользоваться очками совсем не трудно: надо надеть их и включить питание. Источником энергии для них служит плоский аккумулятор размерами с сигаретную пачку. Здесь же, в блоке, помещается и генератор.

Излучаемые им сигналы, натолкнувшись на преграду, возвращаются назад и улавливаются «линзами-приемниками». Принятые импульсы усиливаются, сравниваются с пороговым сигналом, и, если есть преграда, тотчас звучит зуммер – тем громче, чем ближе подошел к ней человек. Дальность действия прибора можно регулировать, используя один из двух диапазонов.

Работы по созданию электронной сетчатки успешно ведутся американскими специалистами НАСА и Главного центра при университете Джона Гопкинса.

На первых порах они постарались помочь людям, у которых еще сохранились кое-какие остатки зрения. «Для них созданы телеочки, – пишут в журнале «Юный техник» С. Григорьев и Е. Рогов, – где вместо линз установлены миниатюрные телеэкраны. Столь же миниатюрные видеокамеры, расположенные на оправе, пересылают в изображение все, что попадает в поле зрения обычного человека. Однако для слабовидящего картина еще и дешифруется с помощью встроенного компьютера. Такой прибор особых чудес не создает и слепых зрячими не делает, считают специалисты, но позволит максимально использовать еще оставшиеся у человека зрительные способности, облегчит ориентацию.

Например, если у человека осталась хотя бы часть сетчатки, компьютер «расщепит» изображение таким образом, чтобы человек мог видеть окружающее хотя бы с помощью сохранившихся периферийных участков.

По оценкам разработчиков, подобные системы помогут примерно 2,5 миллионов людей, страдающих дефектами зрения. Ну а как быть с теми, у кого сетчатка практически полностью утрачена? Для них ученые глазного центра, работающего при университете Дюка (штат Северная Каролина), осваивают операции по вживлению электронной сетчатки. Под кожу имплантируются специальные электроды, которые, будучи соединены с нервами, передают изображение в мозг. Слепой видит картину, состоящую из отдельных светящихся точек, очень похожую на демонстрационное табло, что устанавливают на стадионах, вокзалах и в аэропортах. Изображение на «табло» опять-таки создают миниатюрные телекамеры, укрепленные на очковой оправе».

И, наконец, последнее слово науки на сегодняшний день – попытка методами современной микротехнологии создать новые чувствительные центры на поврежденной сетчатке. Такими операциями занимаются сейчас в Северной Каролине профессор Рост Пропет и его коллеги. Совместно со специалистами НАСА они создали первые образцы субэлектронной сетчатки, которая непосредственно имплантируется в глаз.

«Наши пациенты, конечно, никогда не смогут любоваться полотнами Рембрандта, – комментирует профессор. – Однако различать, где дверь, а где окно, дорожные знаки и вывески они все-таки будут…»

Из книги Большая Советская Энциклопедия (ВО) автора БСЭ

Из книги Большая Советская Энциклопедия (ЗУ) автора БСЭ

Из книги Большая Советская Энциклопедия (ИС) автора БСЭ

Из книги Большая Советская Энциклопедия (СП) автора БСЭ

Из книги Промальп в ответах на вопросы автора Гофштейн Александр Ильич

Из книги Тайны драгоценных камней автора Старцев Руслан Владимирович

Из книги Странности нашего тела – 2 автора Джуан Стивен

3.9. Искусственные точки закрепления веревок (искусственные точки опоры - ИТО) Если нет возможности надежно закрепить несущую и (или) страховочную веревку (точки закрепления отсутствуют вовсе или их надежность сомнительна), а использование локальных петель по каким-либо

Из книги Правоведение: Шпаргалка автора Автор неизвестен

Искусственные рубины Уже было сказано о том, что давно люди пытались получать драгоценные камни сами. Но только с получением обширных знаний по физике и химии это в конце концов оказалось возможно.Еще в 1837 году некий Марк Годен - французский химик - поставил и успешно

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Существуют ли искусственные почки? Можно сказать, что подобие искусственных почек существует с 1944 г. Функции почек выполняет аппарат для диализа, но его размещают вне тела. Диализ можно проводить, используя стационарную больничную установку (обычно два раза в неделю),

Из книги Осмысление процессов автора Тевосян Михаил

Из книги Макияж [Краткая энциклопедия] автора Колпакова Анастасия Витальевна

5.5. Анализаторы. Органы чувств, их роль в организме. Строение и функции. Высшая нервная деятельность. Сон, его значение. Сознание, память, эмоции, речь, мышление. Особенности психики человека 5.5.1 Органы чувств (анализаторы). Строение и функции органов зрения и слуха Основные

Из книги Катастрофы тела [Влияние звезд, деформация черепа, великаны, карлики, толстяки, волосатики, уродцы...] автора Кудряшов Виктор Евгеньевич

6.5. Происхождение человека. Человек как вид, его место в системе органического мира. Гипотезы происхождения человека. Движущие силы и этапы эволюции человека. Человеческие расы, их генетическое родство. Биосоциальная природа человека. Социальная и природная среда,

Из книги Универсальный энциклопедический справочник автора Исаева Е. Л.

Из книги автора

Искусственные ресницы Современные технологии позволяют сделать взгляд неотразимым. Этого можно достичь наращиванием ресниц. Искусственные ресницы стали актуальными в последнее время, несмотря на то, что процедура довольно дорогая и трудоемкая.Существует несколько

Из книги автора

Искусственные карлики Первые попытки искусственного создания карликов имели место на закате Римской Империи. Когда они оказались удачными, тут же возник целый промысел, специализирующийся на производстве и продаже искусственных карликов. Среди римского плебса агенты

Из книги автора

Внутренние органы человека Дыхательная

Уже сегодня технологии выращивания новых органов широко используются в медицине и позволяют осваивать новые методы изучения иммунной системы и различных заболеваний, а также снижают потребность в трансплантатах. Пациенты, которым сделали пересадку каких-либо органов, нуждаются в большом количестве токсических препаратов для того, чтобы подавлять свою иммунную систему; иначе их организм может отвергнуть пересаженный орган. Однако, благодаря развитию тканевой инженерии, пересадка органов может остаться в прошлом. Используя клетки самих пациентов в качестве материала для выращивания в лаборатории новых видов ткани, ученые открывают все новые технологии создания человеческих органов.

Выращивание органов -- перспективная биоинженерная технология, целью которой является создание различных полноценных жизнеспособных биологических органов для человека. Пока технология не применяется на людях.

Создание органов стало возможным чуть более 10 лет назад благодаря развитию биоинженерных технологий. Для выращивания используют стволовые клетки, взятые у пациента. Разработанная недавно технология ИПК (индуцированные плюрипотентные клетки) позволяет перепрограммировать стволовые клетки взрослого человека так, чтобы из них мог получиться любой орган.

Выращивание органов или тканей человека может быть, как внутренним, так и наружным (в пробирках).

Самый известный ученый в этой области - Энтони Атала, признанный Врачом года-2011, глава лаборатории в Институте регенеративной медицины Вейк Сити (США). Именно под его руководством 12 лет назад был создан первый искусственный орган - мочевой пузырь. Вначале Атала с коллегами создали искусственную матрицу из биосовместимых материалов. Затем взяли у пациента здоровые стволовые клетки мочевого пузыря и перенесли на каркас: одни изнутри, другие снаружи. Через 6-8 недель орган был готов к пересадке.

«Меня учили, что нервные клетки не восстанавливаются, - вспоминал позже Атала. - Как же мы были поражены, когда наблюдали, как пересаженный нами мочевой пузырь покрывается сеткой нервных клеток! Это значило, что он будет, как и должно, общаться с мозгом и функционировать как у всех здоровых людей. Удивительно, как много истин, которые еще 20 лет назад казались незыблемыми, опровергнуто, и теперь нам открыты ворота в будущее».

Для создания матрикса применяют донорские или искусственные ткани, даже углеродные нанотрубки и нити ДНК. Например, кожа, выращенная на каркасе из углеродных нанотрубок, в десятки раз прочнее стали - неуязвима, как у супермена. Только непонятно, как с таким человеком потом работать, например, хирургу. Кожу на каркасе из паучьего шелка (тоже прочнее стали) уже вырастили. Правда, человеку пока не пересаживали.

А самая, пожалуй, передовая технология - печатание органов. Придумал ее все тот же Атала. Метод годится для сплошных органов и особенно хорош для трубчатых. Для первых экспериментов использовали обычный струйный принтер. Позже, конечно, изобрели специальный.

Принцип прост, как все гениальное. Вместо чернил разного цвета картриджи заправлены суспензиями разных типов стволовых клеток. Компьютер вычисляет структуру органа и задает режим печати. Он, конечно, сложнее обычной печати на бумаге, в нем много-много слоев. За счет них и создается объем. Потом все это должно срастись. Уже удалось «напечатать» кровеносные сосуды, в том числе сложно ветвящиеся.

Кожа и хрящи. Их вырастить проще всего: достаточно было научиться размножать кожные и хрящевые клетки вне организма. Хрящи пересаживают уже около 16 лет, это достаточно распространенная операция.

Кровеносные сосуды. Вырастить их несколько сложнее, чем кожу. Ведь это трубчатый орган, который состоит из двух типов клеток: одни выстилают внутреннюю поверхность, а другие формируют наружные стенки. Первыми вырастили сосуды японцы под руководством профессора Кадзува Накао из Медицинской школы Киотского университета еще в 2004 году. Чуть позже, в 2006 году, директор Института стволовой клетки университета Миннесоты в Миннеаполисе (США) Катрин Верфэйл продемонстрировала выращенные клетки мышц.

Сердце. Шестнадцати детям в Германии уже пересажены клапаны сердца, выращенные на каркасе от свиного сердца. Двое детей живут с такими клапанами уже 8 лет, и клапаны растут вместе с сердцем! Американо-гонконгская группа ученых обещает начать пересадку «заплаток» для сердца после инфаркта через 5 лет, а английская команда биоинженеров через 10 лет планирует пересаживать целое новенькое сердце.

Почки, печень, поджелудочная железа. Как и сердце, это так называемые сплошные органы. В них самая высокая плотность клеток, поэтому вырастить их труднее всего. Уже решен главный вопрос: как сделать так, чтобы выращенные клетки составили форму печени или почки? Для этого берут матрицу в форме органа, помещают в биореактор и заполняют клетками.

Мочевой пузырь. Самый первый «орган из пробирки». Сегодня операции по выращиванию и пересадке собственного «нового» мочевого пузыря уже сделаны нескольким десяткам американцев.

Верхняя челюсть. Специалисты из Института регенеративной медицины при университете Тампере (Финляндия) умудрились вырастить верхнюю челюсть человека… в его собственной брюшной полости. Они перенесли стволовые клетки на искусственную матрицу из фосфата кальция и зашили мужчине в живот. Через 9 месяцев челюсть извлекли и поставили на место родной, удаленной из-за опухоли.

Сетчатка глаза, нервная ткань мозга. Достигнуты серьезные успехи, но пока о весомых результатах говорить рано.



Loading...Loading...