Нерегулярные типы полового размножения. Особенности наследования при нерегулярных типах полового и при бесполом размножении. Учебные и воспитательные цели

Наследование при апомиксисе . Законы доминирования и расщепления проявляются при половом размножении. Но в случае каких-либо отклонений от нормы в половом процессе происходят изменения характера расщепления. Рассмотрим нарушения менделевских закономерностей при нерегулярных типах полового размножения.

Уже Мендель приводит один из таких случаев. В опытах с ястребинкой (Hieracium) он столкнулся с большими трудностями в получении гибридов. У немногочисленных гибридов первого поколения он наблюдал не единообразие, а расщепление по окраске цветка. Второе же поколение оказалось единообразным, и отдельные растения целиком походили на гибриды F 1 , от которых они произошли. Таким образом, на этом объекте получились результаты, на первый взгляд противоположные законам доминирования и расщепления, открытым на горохе. Мендель не смог объяснить этот парадокс, так как он не знал особенностей размножения ястребинки (рис.7). Теперь известно, что у этого рода имеет место девственное размножение - апомиксис. Из яйцеклетки, которая образуется, минуя, мейоз , без оплодотворения возникает новый организм, генотипически полностью идентичный материнскому. Например, у растения генотипа Аа образуются такие же яйцеклетки Аа, в силу чего растения апомиктически размножающихся видов очень часто бывают гетерозиготными. Можно предположить, что в тех редких случаях, когда Менделю удалось осуществить гибридизацию, гетерозиготные растения дали расщепления. Когда гибридам F 1 была предоставлена возможность самоопыляться, они, размножаясь апомиктически, дали подобное себе единообразное потомство.

Рисунок 7. Окраска цветков ястребинки

Наследование при партеногенезе . В некоторых случаях при девственном размножении имеет место мейоз. Например, у пчел (Apis mellifera) из гаплоидных яйцеклеток при оплодотворении образуются самки, а без оплодотворения - самцы. В результате меняется и характер наследования признаков, как это можно видеть из следующей схемы:

Р ♀ аа х ♂А

серая желтый

Гаметы а а А

F ♂ а ♀ Аа

серый желтая

При скрещивании серой самки (аа) с желтым самцом (F) в F 1 получаются гибридные (Aа) желтые самки и партеногенетические (а) серые, подобные матерям самцы. Таким образом, при девственном размножении наследственная информация передается по материнской линии и партеногенетическое потомство (в данном случае самцы) похоже на мать.

Наследование при андрогенезе . В случае андрогенеза наблюдается противоположное явление, так как зигота развивается за счет цитоплазмы яйцеклетки и ядра сперматозоида и, следовательно, ее генотип будет определяться генотипом отца. Например, у самки шелкопряда (Bombyx mori), несущий доминантный признак коричневой окраски грены (АА), высокой температурой убивались ядра яйцеклеток. Такую самку скрещивали с самцом, имеющим рецессивный признак красной окраски грены (аа). В результате грена имела не коричневую окраску, как это было бы при нормальном оплодотворении у гибридных Аа зигот, а красную в соответствии с единственным геном а, полученным от отца. Таким образом, при андрогенезе потомство наследует отцовский признак.

В любых других случаях нарушений полового размножения будут наблюдаться отклонения от закономерностей наследования, открытых Менделем.

Необходимо подчеркнуть, что в подавляющем большинстве случаев при половом размножении на самых разных объектах и разнообразных признаках осуществляются открытые Менделем законы. Условия и причины, вызывающие нарушения проявления этих законов, связаны с аномалиями или изменениями характера полового процесса.

Наследование при бесполом размножении. При бесполом размножении, основой которого является равнонаследственное митотическое деление, характер наследования совсем иной. Рассмотрим такой пример. У земляники красная окраска ягоды (АА) неполно доминирует над белой (аа), у гетерозиготного растения (Аа) ягоды розовые. При самоопылении гетерозигота будет давать расщепление на красные, розовые и белые ягоды в отношении 1:2:1. Если же это гетерозиготное растение будет размножаться вегетативно, усами, то из отводок новые дочерние растения возникнут за счет митотических делений, т. е. каждая новая клетка и каждое дочернее растение будут иметь один и тот же генотип Аа, благодаря чему на всех растениях ягоды будут только розовые, как у исходной формы (рис.8).

Рисунок 8. Наследование окраски ягоды у земляники при самоопылении и вегетативном размножении: АА - красная; аа - белая; Ла - розовая окраска.

Таким образом, вегетативное размножение обеспечивает полное сходство потомков с родителями и единообразие особей в последовательных поколениях. Поэтому потомство одного вегетативно размножающегося растения всегда очень однородно, оно получило название клона.

Открытый Менделем метод анализа наследования отдельных пар признаков при моногибридном скрещивании позволил установить следующие закономерности:

1) признаки определяются константными наследственными задатками - генами,

2) при скрещивании в первом поколении наблюдается явление доминирования,

3) в потомстве гибрида (F 2) наблюдается расщепление в определенном количественном отношении.

Таким образом, своими исследованиями Мендель установил принципиально важное положение, а именно признаки (свойства) организма при скрещивании не исчезают в поколениях, а сохраняются. Это открытие явилось замечательным обоснованием учения Ч. Дарвина о происхождении видов путем естественного отбора. Оно позволило объяснить механизм, с помощью которого приспособительные свойства организмов не поглощаются скрещиванием, а сохраняются и могут накапливаться в поколениях под действием естественного отбора.

Половое размножение встречается в основном у высших организмов. Оно обеспечивает значительное генетическое разнообразие и, следовательно, большую фенотипическую изменчивость потомства; организмы получают большие эволюционные возможности, возникает материал для естественного отбора.

Помимо полового размножения, существует половой процесс. Суть его в том, что обмен генетической информацией между особями происходит, но без увеличения числа особей. Формированию гамет у многоклеточных предшествует мейоз. Половой процесс состоит в объединении наследственного материала от двух разных источников (родителей).

При половом размножении потомство генетически отличается от своих родителей, так как между родителями происходит обмен генетической информацией.

Основой полового размножения является мейоз. Родителями являются две особи – мужская и женская, они вырабатывают разные половые клетки. В этом проявляется половой диморфизм, который отражает различие задач, выполняемых при половом размножении мужским и женским организмами.

Половое размножение осуществляется через гаметы – половые клетки, имеющие гаплоидный набор хромосом и вырабатывающиеся в родительских организмах. Слияние родительских клеток приводит к образованию зиготы, из которой в дальнейшем образуется организм-потомок. Половые клетки образуются в гонадах – половых железах (в яичниках у самок и семенниках у самцов).

Процесс образования половых клеток называется гаметогенезом (овогенезом у самок и сперматогенезом у самцов).

Если мужские и женские гаметы образуются в организме одной особи, то ее называют гермафродитной. Гермафродитизм бывает истинный (особь имеет гонады обоих полов) и ложный гермафродитизм (особь имеет половые железы одного типа – мужского или женского, а наружные половые органы и вторичные половые признаки обоих полов).

Партеногенез (девственное размножение)

Виды партеногенеза:

1.облигатный (обязательный) партеногенез. Встречается в популяциях, состоящих исключительно из особей женского пола. При этом вероятность встречи разнополых особей минимальна

2.циклический (сезонный) партеногенез (у тлей, дафний, коловраток). Встречается в популяциях, которые исторически вымирали в больших количествах в определенное время года. У этих видов партеногенез сочетается с половым размножением. При этом в летнее время существуют только самки, которые откладывают два вида яиц – крупные и мелкие. Из крупных яиц партеногенетически появляются самки, а из мелких – самцы, которые оплодотворяют яйца, лежащие зимой на дне. Из них появляются исключительно самки;

3.факультативный (необязательный) партеногенез. Встречается у общественных насекомых (ос, пчел, муравьев). В популяции пчел из оплодотворенных яиц выходят самки (рабочие пчелы и царицы), из неоплодотворенных – самцы (трутни).


Гиногенез (у костистых рыб и некоторых земноводных). Сперматозоид проникает в яйцеклетку и лишь стимулирует ее развитие. Ядро сперматозоида при этом с ядром яйцеклетки не сливается и погибает, а источником наследственного материала для развития потомка служит ДНК ядра яйцеклетки.

Андрогенез. В развитии зародыша участвует мужское ядро, привнесенное в яйцеклетку, а ядро яйцеклетки при этом гибнет. Яйцеклетка дает лишь питательные вещества своей цитоплазмы.

Полиэмбриония . Зигота (эмбрион) делится на несколько частей бесполым способом, каждая из которых развивается в самостоятельный организм. Встречается у насекомых (наездников), броненосцев. У броненосцев клеточный материал первоначально одного зародыша на стадии бластулы равномерно разделяется между 4–8 зародышами, каждый из которых в дальнейшем дает полноценную особь.

У одноклеточных организмов выделяют две формы полового размножения – копуляцию и конъюгацию .

При конъюгации (например, у инфузорий) специальные половые клетки не образуются. При этом процессе не происходит увеличения количества особей, поэтому говорят о половом процессе, а не о половом размножении. Однако происходит обмен (рекомбинация) наследственной информацией, поэтому потомки генетически отличаются от своих родителей.

При копуляции (у простейших) происходят образование половых элементов и их попарное слияние. При этом две особи приобретают половые различия и полностью сливаются, образуя зиготу. Происходят объединение и рекомбинация наследственного материала, поэтому особи генетически отличны от родительских.

Половое размножение встречается в основном у высших организмов. Оно обеспечивает значительное генетическое разнообразие и, следовательно, большую фенотипическую изменчивость потомства; организмы получают большие эволюционные возможности, возникает материал для естественного отбора.

Помимо полового размножения, существует половой процесс. Суть его в том, что обмен генетической информацией между особями происходит, но без увеличения числа особей. Формированию гамет у многоклеточных предшествует мейоз. Половой процесс состоит в объединении наследственного материала от двух разных источников (родителей).

При половом размножении потомство генетически отличается от своих родителей, так как между родителями происходит обмен генетической информацией.

Основой полового размножения является мейоз. Родителями являются две особи – мужская и женская, они вырабатывают разные половые клетки. В этом проявляется половой диморфизм, который отражает различие задач, выполняемых при половом размножении мужским и женским организмами.

Половое размножение осуществляется через гаметы – половые клетки, имеющие гаплоидный набор хромосом и вырабатывающиеся в родительских организмах. Слияние родительских клеток приводит к образованию зиготы, из которой в дальнейшем образуется организм-потомок. Половые клетки образуются в гонадах – половых железах (в яичниках у самок и семенниках у самцов).

Процесс образования половых клеток называется гаметогенезом (овогенезом у самок и сперматогенезом у самцов).

Если мужские и женские гаметы образуются в организме одной особи, то ее называют гермафродитной. Гермафродитизм бывает истинный (особь имеет гонады обоих полов) и ложный гермафродитизм (особь имеет половые железы одного типа – мужского или женского, а наружные половые органы и вторичные половые признаки обоих полов).

Партеногенез (девственное размножение)

Виды партеногенеза:

1.облигатный (обязательный) партеногенез. Встречается в популяциях, состоящих исключительно из особей женского пола. При этом вероятность встречи разнополых особей минимальна

2.циклический (сезонный) партеногенез (у тлей, дафний, коловраток). Встречается в популяциях, которые исторически вымирали в больших количествах в определенное время года. У этих видов партеногенез сочетается с половым размножением. При этом в летнее время существуют только самки, которые откладывают два вида яиц – крупные и мелкие. Из крупных яиц партеногенетически появляются самки, а из мелких – самцы, которые оплодотворяют яйца, лежащие зимой на дне. Из них появляются исключительно самки;

3.факультативный (необязательный) партеногенез. Встречается у общественных насекомых (ос, пчел, муравьев). В популяции пчел из оплодотворенных яиц выходят самки (рабочие пчелы и царицы), из неоплодотворенных – самцы (трутни).

Гиногенез (у костистых рыб и некоторых земноводных). Сперматозоид проникает в яйцеклетку и лишь стимулирует ее развитие. Ядро сперматозоида при этом с ядром яйцеклетки не сливается и погибает, а источником наследственного материала для развития потомка служит ДНК ядра яйцеклетки.

Андрогенез. В развитии зародыша участвует мужское ядро, привнесенное в яйцеклетку, а ядро яйцеклетки при этом гибнет. Яйцеклетка дает лишь питательные вещества своей цитоплазмы.

Полиэмбриония . Зигота (эмбрион) делится на несколько частей бесполым способом, каждая из которых развивается в самостоятельный организм. Встречается у насекомых (наездников), броненосцев. У броненосцев клеточный материал первоначально одного зародыша на стадии бластулы равномерно разделяется между 4–8 зародышами, каждый из которых в дальнейшем дает полноценную особь.

У одноклеточных организмов выделяют две формы полового размножения – копуляцию и конъюгацию .

У животных и растений встречаются так называемые нерегу­лярные типы полового размножения. Это прежде всего апомиксис (от греч. «апо» - без, «миксис» - смешение), т.е. половое раз­множение без оплодотворения. Апомиксис противоположен амфи­миксису («амфи» - разделенный), т. е. половому размножению, происходящему путем слияния разнокачественных гамет. Синоним апомиксиса - партеногенез, т. е. девственное размножение от греч. «партенос» - девственница). Термин апомиксис чаще упот­ребляют в отношении растений, а партеногенез - в отношении животных.

Наряду с партеногенезом наблюдается и развитие яйцеклетки, активируемое сперматозоидом, не участвующим в оплодотворении. Мужской пронуклеус погибает, а организм развивается за счет женского пронуклеуса. Это явление называется гиногенезом, который встречается у гермафродитных круглых червей и у неко­торых рыб.

Противоположность гиногенеза - андрогенез - развитие толь­ко за счет мужского пронуклеуса в случае гибели женского пронук­леуса. Гаплоидный андрогенез встречается очень редко. Развитие андрогенных особей до взрослого состояния наблюдали только у наездника Habrobracon и у тутового шелкопряда.

У тутового шелкопряда при оплодотворении в яйцеклетку про­никает несколько сперматозоидов, но ядро лишь одного из них сливается с ядром яйцеклетки, остальные погибают. Если неопло­дотворенные яйцеклетки активировать температурным шоком, как это описано выше, и облучить рентгеновскими лучами, то ядро яйцеклетки погибнет. Если далее такие энуклеированные яйца осеменить, то два мужских пронуклеуса, проникшие в яйцеклетку, сливаются между собой. За счет образовавшегося диплоидного ядра развивается зигота. Как показал Б. JI. Астауров, такие андро- генетические зиготы всегда превращаются в самцов, поскольку они несут две одинаковые половые хромосомы - ZZ. Получение чисто мужского потомства у шелкопряда экономически выгодно, так как самцы продуктивнее самок.

При огромном разнообразии форм размножения организмов все они могут быть сведены к двум основным типам: бесполому и половому. При бесполом размножении воспроизведение потомства происходит от одной родительской особи путем образования спор или вегетативно. При вегетативном размножении потомство возникает от отделившихся от материнской особи участков тела. При вегетативном размножении у растений сохраняется гетерозиготность в течение многих поколений.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция 1. Размножение .

План:

  1. Cущность размножения;
  2. Партеногенез. Моноспермия и полиспермия.
  3. Избирательность гамет и селективное оплодотворение.
  4. Нерегулярные типы полового размножения.
  5. Эволюционное значение апомиктического способа размножения.

Клетки и ее структурные элементы составляют материальную основу размножения организмов. Продолжение и преемственность жизни на Земле поддерживается благодаря

Размножению организмов.

При огромном разнообразии форм размножения организмов все они могут быть сведены к двум основным типам: бесполому и половому. При бесполом размножении воспроизведение потомства происходит от одной родительской особи путем образования спор или вегетативно. В первом случае новый организм возникает из споры.

При вегетативном размножении потомство возникает от отделившихся от материнской особи участков тела. При вегетативном размножении у растений сохраняется гетерозиготность в течение многих поколений.

При половом размножении потомство дают две родительские особи. Особую форму полового размножения представляет партеногенез, при котором новый организм возникает из неоплодотворенного яйца. У растений развитие зародыша без слияния половых клеток получило название апомиксиса.

Господствующим типом размножения животных и растений является половое размножение.

Моноспермия и полиспермия. При слиянии ядра яйцеклетки с ядрами двух и большего числа спермиев происходило бы нагромаждением ядерного материала и свойства отцовского и материнского организмов не могли бы наследоваться в равной степени. Поэтому у большинства растений и животных оплодотворение идет при участии одного спермия. Это моноспермия.

У некоторых видов птиц, млекопитающих, насекомых яйцо имеет несколько микропиле и в него проникает много сперматозоидов. Это явление получило название полиспермии. При полиспермии в цитоплазме ядра образуются несколько мужских пронуклеусов, однако только один из них соединяется с ядром яйцеклетки, а все другие растворяются.

У растений в ходе эволюции выработались механизмы, обеспечивающие блокирование зародышевого мешка после проникновения в него одной пыльцевой трубки.

Однако, наблюдались случаи, когда в зародышевый мешок проникают несколько пыльцевых трубок и происходило слияние спермиев с другими клетками зародышевого мешка, в результате чего образуется несколько зародышей. Полиспермия у растений возможна и при проникновении в зародышевый мешок одной пыльцевой трубки, когда спермии во время ее роста претерпели одно или несколько митотических делений. Явление полиспермии наблюдается у хлопчатника, табак, свеклы и др. растений.

Избирательность гамет и селективное оплодотворение. Ветер и насекомые заносят на рыльце цветка большое количество пыльцы разных растений того же вида, а очень часто и пыльцу других видов. В то же время в зародышевый мешок проникает, как правило, только одна пыльцевая трубка. Многочисленные исследования показали, что, как правило, оплодотворение происходит пыльцой других особей данного вида и сорта растений. Этот процесс обеспечивается целым рядом приспособлений: в сроках созревания генеративных органов, строении цветка, способа опыления, структуре пестика, биохимическом составе выделений пыльцевой трубки и т.д.

В то же время существуют не менее многочисленные физиологические и генетические барьеры, препятствующие оплодотворению растений одного вида пыльцой других видов или родов. При этом пыльцевые зерна совсем не прорастают или пыльцевые трубки не достигают зародышевого мешка, а если оплодотворение и происходит, то зародыш не развивается из-за несоответствия хромосомных компонентов соединившихся гамет.

При прорастании на одном рыльце пыльцы разных сортов или разных растений одного и того же сорта выявляется разная конкурентноспособность пыльцевых трубок по скорости их прорастания в тканях столбика пестика. Это явление селективности оплодотворения.

Нерегулярные типы полового размножения. Основной тип полового размножения, сущность которого составляет процесс соединения мужских и женских половых гамет наз. Амфимиксисом. Но у некоторых растений развитие зародыша происходит без слияния половых клеток.

Апомиксис представляет собой способ образования семян без полового процесса. Формы апомиксиса у покрытосеменных растений многообразны и различаются между собой по характеру развития зародышевого мешка, зародыша и эндосперма. Апомиксис может нерегулярным и регулярным. При первом типе материнская клетка мегаспор претерпевает обычный мейоз и возникает гаплоидный зародышевый мешок. Новый зародыш может образовываться из неоплодотворенной яйцеклетки или других клеток зародышевого мешка – синергид и антипод. Иногда спермий проникает в яйцеклетку, но с ее ядром не сливается. Он лишь стимулирует ее деление, а сам элиминируется (гиногенез). При этих формах нерегулярного апомиксиса возникают гаплоиды с редуцированным числом хромосом и признаками материнского организма. Если ядро яйцеклетки по каким то причинам погибает, зародыш может образоваться из ядра спермия и цитоплазмы яйцеклетки (андрогенез). Он будет иметь гаплоидное число хромосом и признаки отцовского растения.

Нерегулярный апомиксис в природе появляется спорадически и может быть вызван искусственно.

При регулярном апомиксисе зародышевый мешок диплоиден. Он может возникать из нередуцированной клетки археспория (генеративная апоспория) или других клеток нуцеллуса - центральной многоклеточной части семяпочки (соматическая апоспория). Зародыш при этом может образоваться из яйцеклетки (диплоидный партеногенез) или другой клетки гаметофита (диплоидная апогамия). Независимо от способа возникновения и плоидности зародышевого мешка зародыши могут образовываться м не из клеток гаметофита, а из нуцеллуса или его покрова – интегумента (адвентивная эмбриония). Эти зародыши всегда диплоидны и могут развиваться рядом с другими зародышами, возникшими из оплодотворенных или неоплодотворенных яйцеклеток, синергид или антипод. Такая форма апомиксиса широко распространена в сем. Рутовые.

Устойчивое апомиктическое размножение имеет преимущества по сравнению с обычным половым. Апомиксис позволяет ибежать расщепления в потомстве гетерозиготных гибридов и сохранить гетерозис в неограниченно длинном ряду поколений.

Эволюционное значение апомиктического способа размножения противоречиво. С одной стороны, апомиксис обладает большим претмуществом, связанным с наличием у апомиктов очень устойчиво и выгодной в данных условиях генетической системы, что часто обеспечивает им высокую жизнеспособность. С другой стороны, преимущество апомиктов имеет временный характер, т.к. в результате выключения полового процесса они образуют внутри вида закрытые клоновые системы и поэтому обладают малой эволюционной пластичностью.

Вопросы:

1). Назовите и охарактеризуйте пути бесполосеменного (семена без оплодотворения) размножения у высших растений.

2). Значение совмещения полового размножения и апомиксиса.

3). Что такое апомиксис и как он связан с видообразованием.

4). Почему виды, использовавшие апомиксис в своей эволюции, пришли в тупик и потеряли пластичность для будущей эволюции?



Loading...Loading...