Просто о сложном: как создаются современные лекарства и что такое драг-дизайн. Как создают лекарства: обзор Медицина лекарственные средства как создать новую тему

Компанию Biocad основал бывший банкир Дмитрий Морозов в 2001 году. Год назад контрольный пакет в ней приобрёл фонд Millhouse Романа Абрамовича, ещё 20 % за 100 миллионов долларов купил «Фармстандарт». К тому моменту компания входила в тройку крупнейших производителей лекарств в России. Её выручка в прошлом году выросла втрое, до 8,6 миллиарда рублей. Сейчас она занимается разработкой лекарств для лечения онкологических и аутоиммунных заболеваний на основе моноклональных антител. Процесс разработки лекарственного препарата длится около пяти лет, большая часть уходит на клинические испытания. От идеи до реализации лекарства проходит 15 лет.

Всего у компании две производственные площадки, в Подмосковье и особой экономической зоне «Санкт-Петербург». The Village побывал на петербургском заводе и узнал, как там делают лекарства будущего.

Biocad

производство лекарств

Месторасположение:
ОЭЗ «Санкт-Петербург»

Число сотрудников в Санкт-Петербурге: более 400

Площадь производственной площадки: 2 000 м 2

Над созданием лекарства работают несколько сотен человек: учёные-биологи, медики, генетики. Разработка биоаналогов занимает пять лет. Биоаналог - это биологический препарат, схожий по параметрам безопасности, качества и эффективности с оригинальным биологическим лекарственным средством в эквивалентной лекарственной форме.

Идея

Разработка лекарств начинается с возникновения идеи, которая обсуждается на научно-техническом совете. В формировании и обсуждении идеи участвуют все научные кадры Biocad - это более 300 учёных. Совместными усилиями они выбирают мишень и способ воздействия на неё для лечения или предотвращения заболевания, формируют образ целевой терапевтической молекулы.

Когда прообраз (целевой профиль) лекарства сформирован, начинается процесс разработки реальной молекулы в соответствии с поставленными целями.

В лаборатории молекулярной генетики создают генетические конструкции для получения белков-мишеней человека, которые будут использованы в дальнейших работах. В специально разработанных программах они собирают нуклеотидные последовательности. Затем передают клеточным технологам, которые выставляют получившиеся генетические векторы в клетки млекопитающих для выработки необходимых белков. Получившиеся белки используются для создания библиотек антител.

Библиотека антител представляет собой небольшую пробирку, в которой находятся миллиарды генов различных антител, каждое из которых индивидуально и способно связываться с определённой мишенью.








Для того чтобы библиотека была направленной и доля антител к выбранной мишени в ней была повышена, животным, в основным лабораторным крысам, перед созданием библиотеки вводят препарат целевого белка (иммунизируют) и ждут защитного ответа - так получают иммунные библиотеки.

В отборе библиотек антител участвуют высокопроизводительные роботы. Они помогают разработчикам отобрать из миллиардов молекул тысячи, сотни, десятки и, наконец, найти несколько самых лучших, полностью повторяющих целевой профиль терапевтической молекулы.













После отбора фракции бактериофагов, способных связаться с выбранной мишенью, для дальнейшего отбора используются бактерии, превращённые в мини-биофабрики по производству антител. В клетки бактериальной культуры внедряются гены антител из библиотеки, при этом каждый бактериальный клон начинает вырабатывать индивидуальное антитело.

Исследователи изучают наработанные в отдельных клонах антитела, а после отбора нескольких антител-лидеров начинается усовершенствование полученных молекул. В этом процессе участие принимает математическое моделирование: биоинформатики создают 3D-модели и делают «предсказания» по их дальнейшему усовершенствованию. Предсказания биоинформатиков проверяются с помощью платформы синтеза генов, где создаются новые синтетические библиотеки антител, из которых снова отбираются лучшие кандидаты. Таким образом учёные получают молекулы, обладающие всеми заданными в целевом профиле свойствами.






Далее клеточные технологи учатся нарабатывать выбранные антитела в клетках млекопитающих, создают оптимальные схемы культивирования и подпитки клеток-продуцентов, постепенно масштабируя наработки от небольших лунок в планшетах до 1000-литровых реакторов. Наработанные в больших количествах антитела-лидеры проходят исследования на животных - мелких грызунах, кроликах, морских свинках, нечеловекообразных обезьянах.





Производство

Перед входом на производство, где в больших приборах - биореакторах выращиваются составляющие будущего лекарства, каждый сотрудник должен пройти через воздушный душ, в котором остаются частички пыли.

Набор датчиков и систем отслеживает и регулирует температуру, скорость перемешивания, уровень pH и растворённого кислорода, обеспечивая необходимые условия для роста клеток. Численность и жизнеспособность клеток отслеживают с помощью микроскопа или автоматического счётчика.

После окончания культивирования жидкость очищают до получения целевого продукта - этот процесс занимает 28–29 дней. После очистки субстанцию моноклональных антител отправляют на контроль и розлив во флаконы, которые поступят в больницы и аптеки.

Фотографии: Дима Цыренщиков

Процесс начинается с получения нового химического состава. Субстанции с комплексной структурой могут быть получены из различных источников, таких как растения (сердечные гликозиды), ткани животных (гепарин), микробные культуры (пенициллин), человеческие клетки (урокиназа), средствами генной инженерии (человеческий инсулин). Человек все глубже проникает в структурно-функциональные взаимосвязи, поиск новых агентов становится более сфокусированным.

Преклиническое тестирование

Преклиническое тестирование собирает информацию о биологических эффектах новых субстанций. Начальный скрининг проводится в биохимико-фармакологических исследованиях или экспериментах на клеточных культурах, изолированных клетках и изолированных органах. Так как эти модели не способны полностью воспроизвести весь комплекс биологических процессов в интактном организме, любое потенциальное лекарство должно быть тестировано на животных. Только опыты на животных могут ответить на вопрос. появляются ли желательные эффекты в нетоксичных или малотоксичных дозах.

Исследование токсичности призвано оценить:

  • токсичность при кратковременном и длительном применении,
  • возможность генетических повреждений (генотоксичность, мутагенность),
  • возможность развития опухолей (онко- и канцерогенность),
  • возможность рождения больного плода (тератогенность).

На животных исследуемые соединения испытываются также на поглощение, распределение, метаболизм, и выделение (фармакокинетика). Даже на уровне преклинических исследований отсеивается подавляющее большинство потенциальных лекарственных соединений и остаются только отдельные из них.

Клиническое тестирование

Фаза I

В этой фазе проводится исследование новых препаратов на здоровых лицах с целью определить, наблюдаются ли у человека эффекты, обнаруженные в тестах на животных, выявить взаимоотношения между дозой и эффектом.

Фаза II

Потенциальный новый препарат апробируется на избранных пациентах для определения терапевтической эффективности при заболевании, для которого он предназначен. Положительное действие должно быть явным, а нежелательные эффекты приемлемо малы.

Фаза III

В этой фазе к исследованию привлекаются большие группы пациентов с помощью которых исследуемое лекарство сравнивается со стандартным лечением по исходам терапии.

Как форма испытаний на людях, такие клинические испытания являются субъектом рассмотрения и одобрения этическими комитетами в соответствии с Хельсинской, Токийской и Венецианской декларациями. В процессе клинических испытаний многие новые лекарства лекарства признаются негодными к применению. В конечном итоге, остается только одно лекарство из примерно 10000 вновь полученных субстанций.

Решение одобрить новое препарат принимает национальный регулирующий орган (в России – Фармкомитет МЗ РФ). Заявители (фармацевтические компании) представляют в регулирующий орган полный комплект документации преклинических и клинических испытаний в которых полученные данные об эффективности и безопасности удовлетворяют установленным требованиям и предполагаемую форму выпуска продукта (таблетки, капсулы и т.д.)

После получения одобрения новое лекарство может продаваться под торговой маркой и, таким образом. становится доступным для назначения врачами и продажи в аптеках.

Параллельно идет разработка технологического процесса производства лекарственного средства, требований к качеству, методов анализа.

Процесс разработки лекарств и подготовки к производству лекарственных средств обычно продолжается 5 – 8 лет.

Фаза IV

По мере распространения препарата за ним продолжается наблюдение. Окончательное суждение о соотношении польза-риск нового лекарства может быть сделано только на основании долговременного опыта его применения. Таким образом, определяется терапевтическая ценность нового лекарственного препарата.

Наше мнение

Путь нового лекарства от исследовательской лаборатории до аптечного прилавка долог и требует вложения колоссальных средств. Вот почему глупо говорить о тотальном импортозамещении в фарминдустрии. Если, конечно, речь не идет о незаконном и полузаконном копировании чужих разработок или бесконечном производстве устаревших препаратов.

Трудно найти человека, который в какой-то период жизни не принимал бы лекарство. И в то же время вряд ли многие задумываются над тем, что в лекарстве, как в фокусе линзы, сосредоточиваются достижения фундаментальных наук – органической и неорганической химии, физиологии, биохимии, биофизики, несомненно, фармакологии и комплекса фармацевтических наук. Достижения этих фундаментальных дисциплин благодаря науке о лекарственных веществах входят в практику и служат на благо человека. Поэтому введение в фармакологию, которому и посвящена статья, не только имеет познавательное значение, но и помогает более целенаправленно изучать биологические и химические дисциплины в школе.

Путь лекарства от лаборатории до больного

Создание лекарства начинается обычно в лаборатории химика –специалиста по органическому синтезу или в лаборатории фитохимика. Первый создает пока еще не исследованные соединения, второй выделяет из растений либо индивидуальные химические соединения, либо группу близких по структуре веществ. Затем созданные или выделенные вещества передаются фармакологу, определяющему, обладают ли эти вещества нужным эффектом. Предположим, что фармаколог ищет вещества, обладающие гипотензивным эффектом, т.е. понижающие артериальное давление. Он может идти двумя путями . Первый путь носит название скрининг . При этом фармакологу часто неизвестно даже предположительно, какой химической структурой должно обладать гипотензивное средство, и он испытывает в опытах на животных одно вещество за другим, отсеивая неэффективные (скрининг-сито). Это весьма трудоемкий метод и часто малоэффективный, однако иногда единственно возможный, особенно когда речь идет о разработке новых, неизвестных, групп лекарственных веществ. Скрининг используется для поиска противоопухолевых средств. Впервые он был применен в начале столетия П.Эрлихом для получения противосифилитических средств на основе органических соединений мышьяка.

Чаще используется метод направленного синтеза . Исследователь постепенно накапливает материал, показывающий, какие химические радикалы или иные структуры ответственны за тот или иной вид действия. Одна из основных проблем фармакологии – изучение закономерностей «структура–действие». Все больше накапливается данных, на основании которых составляются программы для компьютеров. Уже с большей долей вероятности можно предсказать характер действия планируемого к синтезу и последующему изучению соединения. Всегда решающим остается эксперимент, но знание общих закономерностей «структура–действие» сокращает путь к успеху.

Итак, предположим, что найдено эффективное средство, способное вызывать гипотензивный эффект, но на этом работа фармаколога не заканчивается. Он должен выяснить, не обладает ли химическое соединение токсическими свойствами, способными проявиться при применении его в качестве лекарственного средства. Фармаколог определяет обычно острую токсичность, т.е. дозу, способную вызвать смерть 50% экспериментальных животных (ЛД 50 – летальная доза); чем меньше эта доза, тем токсичнее вещество. Лекарством может стать только то вещество, терапевтическая (лечебная) доза которого значительно (часто в 20 и более раз) меньше ЛД 50 . Диапазон доз от минимальной эффективной до минимальной токсической свидетельствует о широте терапевтического действия лекарств.

Фармаколог определяет и возможность побочных эффектов при длительном введении лекарства в терапевтических дозах. Проводится определение субхронической токсичности: препарат вводят длительное время – часто до 6 месяцев и более. При этом определяют функции всех систем организма, биохимические показатели крови, проводят патогистологическое исследование органов подопытных животных после окончания введения препарата. Это исследование позволяет судить, не нарушает ли лекарственный препарат функции органов и тканей организма при длительном введении, т.е. безопасна ли длительная терапия этим соединением. Фармаколог определяет и другие возможные токсические эффекты препарата: его влияние на репродуктивную функцию (способность производить потомство), эмбриотоксическое действие (возможность влиять на эмбрион), тератогенное действие (способность вызывать уродства плода), мутагенный эффект. При помощи специальных проб изучают влияние препарата на иммунитет, возможность канцерогенного действия препарата, его аллергенную активность и др.

Одновременно работают и специалисты-провизоры, определяющие наиболее рациональную лекарственную форму. На этом заканчивается этап доклинического исследования препарата. В каждой стране есть официальное учреждение, разрешающее клиническое исследование препарата и последующее использование его в качестве лекарственного средства. В России разрешение на клиническое исследование препарата дает Фармакологический комитет Министерства здравоохранения РФ.

Перед клиницистом, получившим на апробацию лекарственный препарат, стоят те же задачи, что и перед фармакологом, т.е. оценка лечебного эффекта препарата и выяснение возможности побочного действия при его применении. Однако у клинициста возникают трудности, с которыми не сталкивается фармаколог-экспериментатор: сознание человека, принимающего лекарство, может изменить оценку действия лекарства. При некоторых заболеваниях возможно улучшение состояния больного под влиянием внушения и авторитета врача, а также больничного режима, диеты, оказывающих положительное влияние. Поэтому необходимо различать истинный эффект лекарства от влияния сопутствующих лечению факторов. Для этого применяют пробу плацебо (пустышка). Предположим, что одной группе больных, разумеется, не требующих экстренного эффективного лечения, назначают таблетки, содержащие лекарство, а другой группе – аналогичные по виду таблетки, но не содержащие лекарства, – плацебо. Если при этом в результате лечения состояние здоровья улучшится примерно у 60% больных первой группы, а во второй группе – у 30% больных, то налицо значительное превышение действия препарата над плацебо. Следовательно, препарат эффективен. Если же эффект препарата равен плацебо, то следует признать неэффективность препарата. Разработкой препарата занимается сравнительно молодая дисциплина – клиническая фармакология . Если в результате клинических испытаний показано, что препарат эффективен, то врач еще должен оценить возможность побочного действия – нежелательного действия лекарственных веществ. Если, например, врач применяет лекарственное средство для снижения артериального давления и одновременно наблюдает у больного расстройство кишечника при лечении гипотензивным средством, то это и есть пример побочного действия. Степень и выраженность побочного действия бывают такими, что заставляют отказаться от испытания препарата, и тогда дальнейшая разработка препарата прекращается. Однако мало выраженное побочное действие, не несущее непосредственной угрозы здоровью больного, не служит причиной отказа от препарата. Известно, что мочегонные средства, такие как фуросемид, дихлотиазид, снижают концентрацию калия в крови, т.е. вызывают гипокалиемию. Однако такое нарушение коррегируется назначением диеты, богатой этими ионами, либо назначением препаратов калия или других так называемых калийсберегающих диуретиков. Коррекция позволяет успешно лечить больных с сердечно-сосудистыми заболеваниями диуретиками, не беспокоясь о развитии гипокалиемии.

Если клинические испытания прошли успешно, препарат получает разрешение на промышленное производство и применение и поступает в аптечную сеть. Отзывы о нем публикуются в печати, продолжается изучение механизма его действия, и, наконец, препарат занимает должное место в арсенале лекарственных средств. Сложен и долог путь нового лекарства от первого этапа исследования до больного. Чаще всего проходит несколько лет, прежде чем препарат разрешают применять в практике. Из многих тысяч исследованных соединений только некоторые внедряются в практику и получают название лекарственный препарат , хотя, конечно, есть и другие примеры.

Проблемы фармакокинетики

Фармакокинетика – раздел фармакологии, изучающий поведение лекарственных препаратов в организме: их всасывание, распределение, выведение и биотрансформацию . Чтобы лекарственный препарат оказал действие, он должен быть введен в организм. Все пути введения разделяются на две группы: энтеральные и парэнтеральные (от греч. энтерон желудочно-кишечный тракт). К энтеральным путям введения относится введение через рот (в том числе под язык), в 12-перстную и прямую кишку. К парэнтеральным путям введения, минующим желудочно-кишечный тракт, относится подкожное, внутримышечное, внутривенное введение лекарственных препаратов. Путь введения во многом определяет скорость поступления и выраженность эффекта лекарства.

После введения в организм лекарственное вещество разносится кровью по органам, тканям и жидким средам, но это не значит, что концентрация введенного препарата в каждом органе или ткани одинакова. Равномерному распределению лекарства мешают тканевые барьеры, через которые лекарственные вещества проникают далеко не одинаково. Одним из таких барьеров является гематоэнцефалический: проникновение веществ в центральную нервную систему из крови ограничено, так как ионизированные или нерастворимые в липидах вещества не проникают в мозг через этот барьер. Например, вещества, содержащие четвертичный атом азота, плохо проникают через этот барьер, к таким веществам может быть отнесено биологически активное соединение ацетилхолин. Биологическое значение такого барьера очевидно: проникновение некоторых веществ в мозг из крови существенно нарушило бы его функцию. Поэтому не только биологически активные, но и многие лекарственные вещества (миорелаксанты, ганглиоблокаторы) не проникают через гематоэнцефалический барьер.

Значительно более проницаемым барьером является стенка капилляров, через которую в ткани проникают большинство лекарственных веществ, но не проходят вещества с высоким молекулярным весом, например белок альбумин, имеющий молекулярную массу около 70 000. Эта особенность используется в практике: например, группа веществ высокого молекулярного веса (полиглюкины) применяется в качества кровезаменителей, так как циркулирует в кровяном русле, не проникая в ткани. Плацентарный барьер, отделяющий организм матери от плода, также легко проницаем для лекарств. Поэтому лекарства, вводимые в организм матери, могут оказывать действие и на плод, что необходимо учитывать при проведении терапии беременным женщинам.

Лекарственные вещества, особенно хорошо растворимые в воде, выводятся из организма почками. Летучие вещества выделяются легкими, частично соединения могут выводиться с каловыми массами, а также потовыми железами. Выделение лекарств – одна из причин того, что концентрация препарата в крови падает и эффективность его действия уменьшается.

Кроме того, лекарства подвергаются процессам биотрансформации. Большинство лекарственных веществ растворимы в липидах и представляют собой слабые органические кислоты или основания, которые сравнительно плохо выводятся из организма. Например, после фильтрации в почечных клубочках они реабсорбируются путем диффузии через мембраны и межклеточные соединения клеток канальцев почек. Для быстрого выведения лекарственные вещества должны быть трансформированы в более полярные формы. Поэтому, если в процессе биотрансформации в организме образуются более полярные метаболиты, ионизированные при физиологическом значении pH, менее связанные с белками плазмы, тканевыми белками, они менее способны проникать через мембраны почечного канальца. Поэтому они не подвергаются реабсорбции в почечных канальцах и выделяются с мочой. Этому и служат процессы биотрансформации в организме, которые способствуют выведению лекарства и делают его менее активным.

Химические реакции, участвующие в биотрансформации, разделяются на реакции синтеза (конъюгации) и несинтетические реакции. К первым относятся реакции присоединения к лекарственным веществам продуктов обмена. Известны реакции ацетилирования, т.е. присоединения остатков уксусной кислоты, глюкуроновой и серной кислоты. В реакциях синтеза участвуют и сульфгидрильные группы, связывающие многие органические и неорганические соединения, в частности тяжелые металлы. К неспецифическим реакциям относятся реакции окисления, восстановления и гидролиза.

Ферментные системы, участвующие в биотрансформации, локализованы в печени и эндоплазматическом ретикулуме печеночных клеток. Выделенные в эксперименте, они получили название микросомальные ферменты , поскольку связаны с фракцией микросом, выделяющихся при дифференциальном центрифугировании фрагментов печеночных клеток. Микросомальные ферменты катализируют реакции конъюгации и реакции окисления, в то время как реакции восстановления и гидролиза часто катализируются немикросомальными ферментами.

Активность микросомальных ферментов различна у разных людей и генетически детерминирована, т.е. зависит от генетических особенностей организма. Считают, что величина биотрансформации у отдельных людей может различаться в 6 раз и более, что и определяет индивидуальную чувствительность к препарату. Так, у одних больных необходимый эффект можно достичь дозами, в несколько раз большими, чем у других, и наоборот. Некоторые лекарственные препараты усиливают активность микросомальных ферментов, их называют индукторами , другие – ингибиторы – подавляют их.

Примером значения активности микросомальных ферментов в терапии может служить препарат противотуберкулезного ряда – изониазид. У некоторых больных высока активность микросомальных ферментов, их называют быстрыми инактиваторами изониазида , у других больных эта активность низка, их называют медленными инактиваторами . После шестидневного введения препарата у больных с низкой активностью концентрация изониазида в крови в 2,5 раза выше, чем у первых. У медленных инактиваторов приходится снижать дозу, чтобы не получить нежелательных побочных действий препарата .

Разумеется, «биотрансформируют» лекарства не только печень, но и другие ткани. В результате биотрансформации лекарственные вещества превращаются в метаболиты, которые, как правило, менее активны, чем основное вещество, лучше растворимы и сравнительно легко выводятся из организма почками. Таким образом организм освобождается от введенного лекарства.

Фармакокинетика предусматривает определение скорости инактивации и выделения, оба процесса определяются термином квота элиминации . Она определяет процент вещества от введенной дозы, который метаболизируется и выводится в течение суток. Если этот процент мал, то лекарство при последующих приемах может накапливаться в организме и увеличивать свой эффект. Врач может умело использовать этот феномен, выбирая дозу препарата, которая насыщает организм, затем переходя на меньшую дозу, которая восполняет потерю препарата и носит название поддерживающая доза . Некоторые вещества, например гликозиды наперстянки, применяются именно таким образом.

Продолжение следует

Как создают лекарства?

XIX век - начало XX века

Пути создания лекарств

Выделение экстрактов из лекарственных растений

Поиск лечебных свойств у неорганических веществ

Проверка

На животных - на токсичность

На людях - на наличие лечебных свойств

В аптеках множество токсичных и малоэффективных лекарств, многие средства действуют за счет эффекта плацебо. Удачные находки единичны.

То, что ивовая кора может унимать жар и боль, знали еще знахари. Но официально европейские врачи ее не применяли. Они ввозили из-за границы хинин, которым и лечили лихорадку.

Так было до тех пор, пока в историю болеутоляющих и жаропонижающих средств не вмешалась политика.

Наполеон установил для Англии экономическую блокаду и закрыл материк для английских торговых судов. Из-за этого хинин перестал поступать и вспомнили об иве. И довольно быстро из нее получили салициловую кислоту.

Но увы… Эта кислота в чистом виде имела неприятный вкус, вызывала тошноту, рвоту и была причиной сильных болей в желудке.

Многие эскулапы пытались улучшить переносимость салициловой кислоты, сохранив при этом ее отменные свойства. Но удалось это лишь немецкому химику Феликсу Хоффману.

Его отец страдал мучительными болями от хронического ревматизма и почти не мог двигаться. Желая облегчить страдания отца, Хоффман-младший начал работать над улучшением салициловой кислоты.

Он обрабатывал природное вещество разными известными на тот момент способами. Ацетилсалициловая кислота оказалась самой удачной модификацией. Выпущенная затем под названием «аспирин», она стала одним из самых знаменитых медикаментов на свете. Любопытно, что механизм действия аспирина обнаружили лишь после 100 лет его применения.

Середина XX века

Пути создания лекарств

Поиск лечебных свойств у неорганических и органических веществ

Проверка

На животных -

На токсичность и наличие лечебных свойств, моделирование человеческих заболеваний у представителей фауны

На людях -

На наличие лечебных свойств

На колонияхмикроорганизмов -

Для выявления антимикробных свойств

Появление антибиотиков и инсулина. В аптеках все больше эффективных лекарств, но побочные действия многих средств еще очень велики. Химическая модификация сотен и тысяч соединений приводит к открытию сульфаниламидов, мочегонных, сахароснижающих и первых гипотензивных средств. В практику входят витамины.

Самые известные лекарства, дошедшие до нас

Его открыл канадский хирург Фред Бантинг. Он изучал на животных свойства экстрактов из поджелудочной железы. Каково же было его удивление, когда после введения такой вытяжки выжила собака, умиравшая от сахарного диабета. Ученый предположил, что какое-то вещество из поджелудочной железы снижает уровень сахара в крови. И через некоторое время проверил свое открытие на друге-медике, который страдал сахарным диабетом.

Новый препарат вызвал у больного друга прилив энергии и бодрости.

А анализы показали уменьшение содержания сахара в крови. С тех пор инсулин - главное средство борьбы с тяжелым сахарным диабетом.

Пенициллин

Антибиотик пенициллин был открыт в 1929 году английским микробиологом Александром Флемингом. Однажды, изучая свойства стафилококков, он забыл на лабораторном столе чашку с культурой бактерий.

Возвратившись, ученый обнаружил в чашке плесень. К его удивлению, она подавила рост микробов. Исследователя озарила догадка: плесень выделяет вещество, убивающее бактерии.

Это вещество он назвал «в честь» плесневого гриба пенициллиума, с которым работал. Испытания на животных показали, что пенициллин действительно эффективно убивает микробов. А при введении в кровь не приносит организму вреда.

Первое успешное применение пенициллина произошло в Америке. Лекарство спасло жизнь молодой женщины, матери троих детей. Температура выше 40 °С держалась у нее 11 дней, и она медленно погибала. Но чудо-лекарство привело ее в сознание уже на второй день применения. Женщина выжила и дожила до глубокой старости.

С тех пор пенициллин спас миллионы людей во всем мире. И продолжает использоваться до сих пор.

Конец ХХ века - ХХI век

Пути создания лекарств

Выделение, химическая модификация экстрактов из лекарственных растений и вытяжек из организма животных

Широкое применение компьютерного моделирования

Целенаправленный поиск соединений с лечебными свойствами, исходя из знаний биохимии, физиологии и генетики

Широкомасштабный синтез органических соединений и поиск у них лечебных свойств

Пути проверки

На животных - на лечебные свойства, токсичность, способность вызывать мутации, уродства плода и рак

На людях - на наличие лечебных свойств. Изучение всасывания, превращений и путей выведения лекарств

На колониях микроорганизмов - для выявления антимикробных свойств

На компьютере -

На соответствие молекулы лекарства-мишени в организме

Появление тысяч эффективных и относительно безопасных лекарств.

Для создания лекарств, как и во многих других сферах, все чаще применяются компьютерные технологии. О том, как уже сейчас различные препараты создаются на компьютере и в чем суть персонализированной медицины, рассказывает Полина Шичкова, студентка пятого курса МФТИ лаборатории биоинформатики кафедры молекулярной и трансляционной медицины и магистрант Сколтеха по направлению «Биомедицинские технологии».

Лекарства. Разнообразие смыслов

Когда вы слышите о новой разработке некой современной фармкомпании, то вряд ли представляете себе собирающих на лужайке целебные травы ученых-биологов или запертых в маленькой лаборатории алхимиков. Как же изобретаются новые лекарства и что они из себя представляют теперь, когда многие лечебные травы уже собраны и изучены?

Суть лекарства - то есть то, что помогает человеку выздороветь - заключается в активном веществе. Вкупе с разнообразными химическими добавками оно может стать, например, удобной для проглатывания цветной таблеткой. Говоря о лекарствах далее, мы будем иметь в виду их активные вещества. Есть несколько разных по своей химической природе типов лекарственных веществ, а в целом их можно разделить на две группы: малые молекулы (с молекулярной массой <500 дальтон, иногда используется менее жесткий предел - 900 дальтон) и биологические препараты (с большей молекулярной массой, обычно это белки или пептиды). На сегодняшний день малые молекулы доминируют на рынке, поэтому мы будем говорить именно о них. Смысл работы любого вещества, обладающего лекарственной активностью, заключается в том, что оно связывается с мишенью бактерии или вируса в организме человека, взаимодействует с другими молекулами, благодаря чему происходит улучшение состояния организма.

Пример сложного каскада реакций в нашем организме: сигнальный путь Wnt

Молекулярные основы препаратов

В организме человека протекает множество химических процессов. Их можно описать каскадами реакций, которые могут быть очень большими и сложными, как на рисунке выше. Развитие заболевания сопровождается нарушениями в каких-то химических процессах в организме. В каскадах реакций есть ключевые участники (некоторые молекулы, в большинстве случаев белки), которые в большей мере ответственны за происходящее. Для них, собственно, разрабатываются лекарства, то есть они становятся мишенями для них.

Поиск мишеней в процессе разработки лекарств

Однако белки - большие молекулы. Поэтому мало просто вычислить белок как мишень среди каскадов и сетей, нужно еще и определить на этой мишени конкретное место. Его называют активным сайтом. Взаимодействие правильного лекарства с этим самым местом и должно приводить к желаемому результату - улучшению самочувствия или выздоровлению.

Представьте себе замок и ключ. Взаимодействие лекарства с белком-мишенью - это и есть закрывание или открывание замка ключом. Чтобы лекарственная молекула могла взаимодействовать с необходимым центром белка, она должна соответствовать множеству физических, химических и даже просто геометрических требований. Замок должен подходить к ключу. Эти параметры могут быть довольно точно рассчитаны как раз с помощью компьютерных методов. Итак, молекула, которая обладает лекарственной активностью против определенного заболевания, связывается с активным сайтом белка-мишени, что модулирует его активность. Очень часто это модулирование заключается в ингибировании (подавлении) его взаимодействия с другими молекулами. Таким образом исправляются ошибки, то есть вылечивается заболевание. Однако важно заметить, что молекулярные механизмы воздействия лекарств на мишени и последующие изменения в каскадах реакций разнообразны и сложны.

Фарминдустрия и разработка лекарств

В среднем на разработку одного лекарства тратится от 1 до 2,5 млрд долларов и около 10–15 лет. Если мы уже знаем белок-мишень и тем более его активный сайт, то для первичного отбора молекул - кандидатов в лекарства можно провести компьютерный виртуальный скрининг или высокопроизводительный экспериментальный скрининг. Последнее значительно дороже.

При проведении высокопроизводительного скрининга используются роботизированные системы. Они позволяют добавлять сотни тысяч разных исследуемых веществ в лунки панелей со специальным образом подготовленной тестовой системой. Разнообразные детекторы регистрируют сигналы о взаимодействии исследуемого вещества в каждой лунке с белком-мишенью тестовой системы.

А теперь давайте представим, что мы можем моделировать то, что происходит в каждой лунке панели высокопроизводительного скрининга. Точнее, как будут взаимодействовать исследуемые молекулы (среди которых мы хотим найти обладающих лекарственной активностью) с белком-мишенью. В таком случае дорогую роботизированную систему можно заменить компьютерными программами, а вещества и белки - описанием их структур в определенном формате. Тогда с помощью компьютерных методов мы исключим вещества, которые плохо взаимодействуют с белком-мишенью, уменьшив количество веществ для экспериментальной проверки, что снизит затраты и увеличит шансы на успех.

Для решения задачи виртуального скрининга активно используется молекулярный докинг («стыковка»). Его суть заключается в моделировании взаимного расположения малой исследуемой молекулы и белка мишени. С помощью специальной скоринговой функции, приближенно описывающей энергию взаимодействия малой молекулы с белком-мишенью, программа докинга ранжирует исследуемые вещества. Используя ее результаты, можно выкинуть из дальнейшего рассмотрения вещества с плохими значениями скоринговой функции относительно некоторого порогового значения. Для виртуального скрининга мы можем взять наборы большего размера (библиотеки) химических соединений, чем для высокопроизводительного скрининга. Так как мы проверим соединения на этапе виртуального скрининга, в экспериментальную проверку попадет уже «обогащенный» набор соединений, то есть тех, что с большей вероятностью будут иметь лекарственную активность. Таким образом, рациональный дизайн лекарств начинается с компьютера. Далее, чтобы лекарство вышло на рынок, оно должно пройти множество преклинических и клинических испытаний. Но даже когда препарат уже применяется на практике, исследования не прекращаются, ведь нужно проверить, нет ли у него побочных эффектов, которые могут проявляться спустя годы. Наверное, одним из наиболее широко известных примеров такого рода побочек является эффект одного успокаивающего и снотворного средства. В 1960-е годы в Европе родились тысячи детей с врожденными уродствами: их матери во время беременности принимали не до конца изученный снотворный препарат (талидомид). Так, из 10 000–1 000 000 кандидатных молекул лишь одна обычно становится настоящим лекарством. Шансы на успех, как мы видим, крайне малы.

Методы компьютерного дизайна лекарств

Какие еще компьютерные методы (помимо виртуального скрининга химических соединений) используются в разработке лекарств? Это может быть всевозможное моделирование, поиск подобных молекул, смена скелета молекулы и многое другое. У тех, кто занимается компьютерным дизайном лекарственных препаратов, есть целый арсенал специальных методик. В целом их принято разделять на те, что руководствуются знанием о структуре мишени, и те, что ориентируются на химическое соединение.

Теперь представим, что мы уже поняли почти все о химической структуре разработанного лекарства. И допустим, что у этого вещества есть побочные свойства, которые не позволяют нам выпустить его на рынок. Используя особые методы - поиск по молекулярному подобию и фармакофорам (наборам пространственных и электронных признаков молекулы), смену скелета молекулы, - мы можем найти такую, которая продолжит лечить, но перестанет калечить, либо побочные эффекты просто уменьшатся. Молекулярное подобие - это похожесть структур химических соединений. Считается, что близкие по химическим структурам соединения наиболее вероятно обладают похожими биологическими свойствами. Фармакофоры позволяют представить молекулу в виде набора функционально важных компонентов, каждый из которых отвечает за какое-то свойство молекулы. Представьте конструктор, каждый из блоков которого представляет какое-то свойство. Часть этих кирпичиков-свойств нас интересуют, а другие, напротив, нежелательны в потенциальном лекарстве, так как могут приводить к побочным эффектам, отрицательно влиять на доставку лекарства в нужное место в организме или на метаболизм. Мы хотим найти молекулу, в которой будут только полезные блоки-фармакофоры. Суть смены скелета молекулы состоит в использовании найденных полезных фрагментов с заменой остальных на более подходящие, то есть в оптимизации свойств молекулы потенциального лекарства.

Персонализированная медицина и драг-дизайн

Мы все отличаемся друг от друга. Одно и то же лекарство может помогать одному человеку, быть бесполезным для другого, а у третьего вызывать нежелательные последствия. Как мы уже говорили, взаимодействие лекарства с белком-мишенью обуславливается множеством физико-химических и пространственных параметров их обоих. А теперь представим, что в участке ДНК, кодирующем белок-мишень пациента N, есть отличие в одном-двух нуклеотидах (составных частей ДНК) по сравнению с большинством людей. То есть белок пациента N отличается от белка большинства людей, и эта его особенность приводит к бесполезности для пациента N лекарства A. Конечно, не каждая замена в ДНК приводит к изменениям в белке и далеко не все изменения являются критическими, но лекарство A не только не вылечит пациента N, но его употребление может привести к серьезным побочным эффектам. Однако, зная подробности замены в гене белка-мишени у пациента N (это можно определить генотипированием), можно смоделировать новую структуру белка. А зная новую структуру, можно провести тот самый скрининг и найти индивидуальное лекарство, которое поможет именно пациенту N.

Есть и менее драматичный пример: некоторые казусы с ДНК просто требуют замены дозировки лекарства. Но о своих особенностях и отличиях пациентам нужно для начала знать. С этим помогает генотипирование. Между тем информацию о взаимосвязи конкретных генетических вариантов с дозировкой лекарств (и не только) сегодня можно найти в специальной глобальной базе данных , чем и занимаются в продвинутых клиниках и чем, можно надеяться, будут заниматься повсеместно, принимая во внимание индивидуальные особенности ДНК пациентов при назначении лечения.

Создание лекарств - это сложно и важно, а компьютерные методы помогают снизить временные и материальные затраты на их разработку. За этими технологиями будущее, над которым сейчас и работает современная наука.



Loading...Loading...