Химические свойства углеводов таблица. Доклад: Углеводы как главный источник энергии в организме человека. Краткие сведения о химическом строении

Определение

Углеводы (сахара или сахариды) - органические вещества, содержащие карбонильную группу и несколько гидроксильных групп.

Соотношение водорода и кислорода в молекулах первых известных представителей углеводов было 2:1. Поскольку общую молекулярную формулу углеводов можно записать как: $C_x(H_2O)_y$, то можно сказать, что углеводы являются соединениями углерода и воды.

Углеводы являются важным компонентом клеток, а следовательно и тканей всех живых организмов, составляя (по сухой массе) основную часть живой биомассы (растений - до 80% и до 3% - животных) на Земле. Источником углеводов для растительных организмов является процесс фотосинтеза:

Фотосинтез протекает в клетках растений и приводит к синтезу углеводов из воды и углекислого газа. Уравнение фотосинтеза можно записать следующим образом:

$6CO_2 +6H_2O \xrightarrow{h\nu} C_6H_{12}O_6$

Углеводы - весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах.

ФУНКЦИИ УГЛЕВОДОВ В ЖИВЫХ ОРГАНИЗМАХ

1. Энергетическая функция . Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды.

2. Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так целлюлоза является основным структурным компонентом клеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих.

3. Защитная роль у растений . У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.

4. Пластическая функция . Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК).

5. Запасающая функция . Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин - у растений.

6. Осмотическая функция . Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100-110 мг/л глюкозы, от концентрации которой зависит осмотическое давление крови.

7. Рецепторная функция . Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.

КЛАССИФИКАЦИЯ УГЛЕВОДОВ

Углеводы можно классифицировать по различным признакам. Самый важный -это количество структурных единиц.

1. По количеству структурных единиц - сахаридов углеводы делятся на простые сахара или моносахариды и полимеры этих простых сахаров или полисахариды. Среди полисахаридов следует выделить группу олигосахаридов , содержащих в молекуле от 2 до 10 моносахаридных остатков. К ним относятся, в частности, дисахариды.

Определение

Определение

Моносахариды - углеводы, которые не гидролизуются (не разлагаются водой).

В зависимости от числа атомов углерода в цепи, моносахариды подразделяются на:

    триозы (содержат три углеродных атома),

    тетрозы (четыре атома С),

    пентозы (пять атомов),

    гексозы (шесть атомов) и т.д.

В природе моносахариды представлены в основном пентозами и гексозами.

К пентозам относятся рибоза $C_5H_{10}O_5$ и дезоксирибоза $C_5H_{10}O_4$. Они входят в состав РНК и ДНК.

Запомни! Глюкоза , фруктоза , галактоза относятся к гексозам и имеют общую молекулярную формулу $C_6H_{12}O_6$

Определение

Дисахариды - углеводороды, которые при гидролизе образуют две молекулы моносахаридов. Общая молекулярная формула дисахаридов $C_{12}H_{22}O_{11}$

Общее уравнение гидролиза дисахаридов можно записать следующим образом:

$C_{12}H_{22}O_{11} +H_2O \longrightarrow 2C_6H_{12}O_6$

Определение

Полисахариды - углеводы, которые гидролизуются с образованием множества молекул моносахаридов, чаще всего глюкозы.

К полисахаридам относятся крахмал, гликоген, целлюлоза и др.

Запомни! Чтобы получить молекулярную формулу полисахарида, нужно от молекулы глюкозы "отнять" молекулу воды и записать выражение с индексом n: $(C_6H_{10}O_5)_n$

2. По скорости усвоения организмами :

Простые или быстрые углеводы синтезируются в зелёных растениях и легко растворяются в воде. Эти углеводы имеют высокий гликемический индекс , то есть очень быстро усваиваются организмом. Продукты, богатые сложными углеводами, расщепляются медленно, постепенно повышая содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами .

3. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные . Углеводы, состоящие из трех или более единиц, называются сложными.

Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры, с образованием сотни и тысячи молекул моносахаридов.

Углеводы - самые распространенные в природе органические соединения. Они встречаются в свободной и связанной формах в любой растительной, животной и бактериальной клетке. Они состоят из углерода, водорода и кислорода в следующем соотношении - на один атом углерода приходится одна молекула воды. Углеводы, как правило, образуются в зеленых растениях в ходе фотосинтеза.

Все углеводы делят на три группы: моносахариды, олигосахариды и полисахариды.

Моносахариды содержат 3-9 атомов углерода и к ним относятся такие вещества как глюкоза, фруктоза, галлактоза, рибоза.

Глюкоза (виноградный сахар) - в свободном виде содержится в ягодах и фруктах, из глюкозы состоят крахмал, гликоген и др., она является составной частью сахарозы, лактозы.

Фруктоза (плодовый сахар) - содержится в чистом виде в пчелином меде, винограде, яблоках, так же является составной частью сахарозы.

Олигосахариды - молекулы содержат от 2 до 10 остатков моносахаридов, соединенных гликозидными связями. К олигосахаридам относят сахарозу, мальтозу, лактозу, раффинозу и др. Сахароза представляет собой обычный пищевой сахар, мальтоза содержится только в молоке.

Полисахариды - к ним относят крахмал, гликоген, клетчатка и др.

Крахмал - наиболее распространенный углевод. Различают клубневый (картофель, батат) и зерновой (кукуруза, рис) крахмал. Он откладывается в клетках растений в виде зерен, из которых он легко выделяется механическим воздействием и при промывании водой. Крахмал состоит из двух фракций: амилоза (18-25 %) и амилопектин (75-82 %). В ходе технологической обработки под действием влаги и тепла крахмал способен адсорбировать влагу, набухать, клейстеризоваться, подвергаться деструкции.

Гликоген - углевод животного происхождения, накапливается в печени (около 10 %) и в мышцах (0.3-1 %) как запасной источник энергии. При его расщеплении образуются глюкоза, которая поступает в кровь и доставляется ко всем тканям организма.

Клетчатка - основной материал клеточных стенок растений. Ферменты желудочно-кишечного тракта человека не расщепляют клетчатку, и она относится к пищевым волокнам.

Пектиновые вещества - группа высокомолекулярных полисахаридов, входящих в состав клеточных стенок. Они содержаться в плодах, овощах в виде нерастворимого в холодной воде протопектина и растворимого пектина. Переход нерастворимых форм в растворимые происходит в процессе тепловой обработки. Пектиновые вещества способны образовывать гели в присутствии кислоты и сахара. Пектиновые вещества не усваиваются организмом, но играют в физиологии питания человека и технологии более активную роль, чем клетчатка. Они образуют комплексные соединения с тяжелыми металлами, выводя их из организма, и являются важным профилактическим средством для профилактики различных заболеваний.

Около 52-66% углеводов поступает с зерновыми продуктами, 14-26% с сахарами и сахаропродуктами, 8-10% с клубне-корнеплодами и 5-7% с овощами и фруктами. Количество углеводов в мясе и мясопродуктах сравнительно не велико и составляет около 1-1.5 %. Роль их в мясе определяется участием в биохимических процессах созревания мяса (изменение рН), формирования вкуса и аромата, изменения консистенции.

Углеводы выполняют следующие функции:

являются источниками энергии;

регуляторная (противостоят образованию кетоновых веществ при окислении жиров);

защитная (глюкуроновая кислота соединяясь с токсичными веществами, образует нетоксичные сложные эфиры, которые выводятся из организма);

участвуют в формировании органолептических характеристик продукта.

Среди углеводов есть представители, которые не усваиваются организмом, но выполняют важную физиологическую функцию, которые называются пищевые волокна. Благодаря специфическим функциональным свойствам они активно участвуют в регуляции биохимических процессов органов пищеварения (стимулируют моторную функцию кишечника, препятствуют всасыванию холестерина) и выведения из организма токсических веществ поступающих с водой, пищей и воздухом. Пищевые волокна являются профилактическими веществами таких заболеваний как сахарный диабет, ожирение, ишемическая болезнь сердца.

Углеводы при хранении пищевого сырья, его переработке претерпевают различные изменения, которые зависят от вида углеводов, условий процесса (влажность, температура, рН) и наличия ферментов. Важными превращениями углеводов являются: кислотный и ферментативный гидролиз ди- и полисахаридов, брожение, реакции меланоидинообразования и карамелизации.

Химические свойства моносахаридов обусловлены наличием:

  • карбонильной группы (ациклическая форма моносахарида)
  • полуацетального гидроксила (циклическая форма моносахарида)
  • спиртовых ОН групп

Восстановление

  • Продукты восстановления: многоатомные спирты –глициты
  • Восстановитель: NaBH 4 или каталитическое гидрирование.

Глициты используются в качестве заменителей сахара.

При восстановлении альдоз происходит “уравнивание” функциональных групп на концах цепи. В результате из некоторых альдоз (эритрозы, рибозы, ксилозы, аллозы, галактозы) образуются оптически неактивные мезо-соединения, например. При восстановлении кетоз из карбонильной группы возникает новый хиральный центр и образуется смесь неравных количеств диастереомерных спиртов (эпимеров по С2):

Эта реакция доказывает, что D-фруктоза, D-глюкоза и D-манноза имеют одинаковые конфигурации хиральных центров С2, С3, и С4.

Окисление

Окислению могут подвергаться:

  • карбонильная группа
  • оба конца углеродной цепи (карбонильная группа и гидроксогруппа у шестого атома углерода)
  • гидроксогруппа у шестого атома углерода независимо от карбонильной

Вид окисления зависит от природы окислителя.

Мягкое окисление. Гликоновые кислоты

  • Окислитель : бромная вода
  • Что окисляется : карбонильная группа альдоз. Кетозы в этих условиях не окисляются и могут быть таким образом выделены из смесей с альдозами.
  • Продукты окисления : гликоновые кислоты (из ациклических моносахаридов), пяти- и шестичленные лактоны (из циклических).

Восстанавливающие моносахариды. Качественная реакция на альдегидную группу

  • Окислитель : катионы металлов Ag + (OH - реактив Толенса) и Cu 2+ (комплекс Cu 2+ с тартрат-ионом - реактив Фелинга) в щелочной среде
  • Что окисляется : карбонильная группа альдоз и кетоз
  • Продукты окисления : гликоновые кислоты и продукты деструктивного распада

Альдоза + + → гликоновая кислота + Ag + продукты деструктивного окисления

Альдоза + Cu 2+ → гликоновая кислота + Cu 2 O + продукты деструктивного окисления

Восстанавливающие углеводы - углеводы, способные восстанавливать реактивы Толенса и Фелинга. Кетозы проявляют восстанавливающие свойства за счет изомеризации в щелочной среде в альдозы, которые и взаимодействуют далее с окислителем. Процесс превращения кетозы в альдозу происходит в результате енолизации. Образующийся из кетозы енол является общим для нее и 2-х альдоз (эпимеров по С-2). Так, в слабощелочном растворе в равновесии с D-фруктозой находятся ендиол, D-глюкоза и D-манноза.

Эпимеризация - взаимопревращения между альдозами, эпимерами по С2 в щелочном растворе.

Жесткое окисление. Гликаровые кислоты

  • Окислитель : разбавленная азотная кислота
  • Что окисляется : оба конца углеродной цепи. Окисление кетоз азотной кислотой протекает с расщеплением С-С связей.
  • Продукты окисления : гликаровые кислоты

При образовании гликаровых кислот, происходит “уравнивание” функциональных групп на концах цепи и из некоторых альдоз образуются мезо-соединения.

Ферментативное окисление в организме. Гликуроновые кислоты

  • Окислитель : ферменты в организме. В лабораторных условиях для защиты карбонильной группы проводят многостадийный синтез.
  • Что окисляется : гидроксогруппа у шестого атома углерода независимо от карбонильной
  • Продукты окисления : гликуроновые кислоты

Гликуроновые кислоты входят в состав полисахаридов (пектиновые вещества, гепарин). Важная биологическая роль D-глюкуроновой кислоты состоит в том, что многие токсичные вещества выводятся из организма с мочой в виде растворимых глюкуронидов.

Реакции полуацетального гидроксила. Гликозиды

Моносахариды способны присоединять соединения различной природы с образованием гликозидов. Гликозид - молекула, в которой остаток углевода связан с другой функциональной группой посредством гликозидной связи .

В присутствии кислот моносахариды взаимодействуют с соединениями, содержащими гидроксогруппу. В результате образуются циклические ацетали - .

Строение гликозидов

Молекула гликозида состоит из двух частей - углеводная компонента и агликон :

По типу связи углеводного остатка и агликона различают:

По размеру цикла гликозиды:

  • пиранозиды
  • фуранозиды

По природе углевода:

  • глюкозиды (ацетали глюкозы)
  • рибозиды (ацетали рибозы)
  • фруктозиды (ацетали фруктозы)

По природе агликона:

  • фенологликозиды
  • антрахиноновые гликозиды

Получение гликозидов

Распространенный способ получения гликозидов - пропускание газообразного хлороводорода (катализатор) через раствор моносахарида в спирте:

Гидролиз гликозидов

Гликозиды легко гидролизуются в кислой среде, устойчивы к гидролизу в слабощелочной среде. Фуранозиды из-за напряженности цикла гидролизуются легче пиранозидов. В результате гидролиза гликозидов образуется соответствующее гидроксосодержащее соединение (спирт, фенол и т. д.) и моносахарид.

Образование простых эфиров

При взаимодействии спиртовых гидроксогрупп с алкилгалогенидами образуются простые эфиры. Простые эфиры устойчивы к гидролизу, а гликозидная связь гидролизуется в кислой среде:

Образование сложных эфиров

Моносахариды вступают в реакцию ацилирования с ангидридами органических кислород. В результате образуются сложные эфиры. Сложные эфиры гидролизуются как в кислой, так и в щелочной средах:

Дегидратация

Дегидратация углеводов происходит при нагревании с минеральными кислотами.

Углеводы — органические соединения, состав которых в большинстве случаев выражается общей формулой C n (H 2 O) m (n и m ≥ 4). Углеводы подразделяются на моносахариды, олигосахариды и полисахариды.

Моносахариды — простые углеводы, в зависимости от числа атомов углерода подразделяются на триозы (3), тетрозы (4), пентозы (5), гексозы (6) и гептозы (7 атомов). Наиболее распространены пентозы и гексозы. Свойства моносахаридов — легко растворяются в воде, кристаллизуются, имеют сладкий вкус, могут быть представлены в форме α- или β-изомеров.

Рибоза и дезоксирибоза относятся к группе пентоз, входят в состав нуклеотидов РНК и ДНК, рибонуклеозидтрифосфатов и дезоксирибонуклеозидтрифосфатов и др. Дезоксирибоза (С 5 Н 10 О 4) отличается от рибозы (С 5 Н 10 О 5) тем, что при втором атоме углерода имеет атом водорода, а не гидроксильную группу, как у рибозы.

Глюкоза, или виноградный сахар (С 6 Н 12 О 6), относится к группе гексоз, может существовать в виде α-глюкозы или β-глюкозы. Отличие между этими пространственными изомерами заключается в том, что при первом атоме углерода у α-глюкозы гидроксильная группа расположена под плоскостью кольца, а у β-глюкозы — над плоскостью.

Глюкоза — это:

  1. один из самых распространенных моносахаридов,
  2. важнейший источник энергии для всех видов работ, происходящих в клетке (эта энергия выделяется при окислении глюкозы в процессе дыхания),
  3. мономер многих олигосахаридов и полисахаридов,
  4. необходимый компонент крови.

Фруктоза, или фруктовый сахар , относится к группе гексоз, слаще глюкозы, в свободном виде содержится в меде (более 50%) и фруктах. Является мономером многих олигосахаридов и полисахаридов.

Олигосахариды — углеводы, образующиеся в результате реакции конденсации между несколькими (от двух до десяти) молекулами моносахаридов. В зависимости от числа остатков моносахаридов различают дисахариды, трисахариды и т. д. Наиболее распространены дисахариды. Свойства олигосахаридов — растворяются в воде, кристаллизуются, сладкий вкус уменьшается по мере увеличения числа остатков моносахаридов. Связь, образующаяся между двумя моносахаридами, называется гликозидной .

Сахароза, или тростниковый, или свекловичный сахар , — дисахарид, состоящий из остатков глюкозы и фруктозы. Содержится в тканях растений. Является продуктом питания (бытовое название — сахар ). В промышленности сахарозу вырабатывают из сахарного тростника (стебли содержат 10-18%) или сахарной свеклы (корнеплоды содержат до 20% сахарозы).

Мальтоза, или солодовый сахар , — дисахарид, состоящий из двух остатков глюкозы. Присутствует в прорастающих семенах злаков.

Лактоза, или молочный сахар , — дисахарид, состоящий из остатков глюкозы и галактозы. Присутствует в молоке всех млекопитающих (2-8,5%).

Полисахариды — это углеводы, образующиеся в результате реакции поликонденсации множества (несколько десятков и более) молекул моносахаридов. Свойства полисахаридов — не растворяются или плохо растворяются в воде, не образуют ясно оформленных кристаллов, не имеют сладкого вкуса.

Крахмал (С 6 Н 10 О 5) n — полимер, мономером которого является α-глюкоза. Полимерные цепочки крахмала содержат разветвленные (амилопектин, 1,6-гликозидные связи) и неразветвленные (амилоза, 1,4-гликозидные связи) участки. Крахмал — основной резервный углевод растений, является одним из продуктов фотосинтеза, накапливается в семенах, клубнях, корневищах, луковицах. Содержание крахмала в зерновках риса — до 86%, пшеницы — до 75%, кукурузы — до 72%, в клубнях картофеля — до 25%. Крахмал — основной углевод пищи человека (пищеварительный фермент — амилаза).

Гликоген (С 6 Н 10 О 5) n — полимер, мономером которого также является α-глюкоза. Полимерные цепочки гликогена напоминают амилопектиновые участки крахмала, но в отличие от них ветвятся еще сильнее. Гликоген — основной резервный углевод животных, в частности, человека. Накапливается в печени (содержание — до 20%) и мышцах (до 4%), является источником глюкозы.

(С 6 Н 10 О 5) n — полимер, мономером которого является β-глюкоза. Полимерные цепочки целлюлозы не ветвятся (β-1,4-гликозидные связи). Основной структурный полисахарид клеточных стенок растений. Содержание целлюлозы в древесине — до 50%, в волокнах семян хлопчатника — до 98%. Целлюлоза не расщепляется пищеварительными соками человека, т.к. у него отсутствует фермент целлюлаза, разрывающий связи между β-глюкозами.

Инулин — полимер, мономером которого является фруктоза. Резервный углевод растений семейства Сложноцветные.

Гликолипиды — комплексные вещества, образующиеся в результате соединения углеводов и липидов.

Гликопротеины — комплексные вещества, образующиеся в результате соединения углеводов и белков.

Функции углеводов

Строение и функции липидов

Липиды не имеют единой химической характеристики. В большинстве пособий, давая определение липидам , говорят, что это сборная группа нерастворимых в воде органических соединений, которые можно извлечь из клетки органическими растворителями — эфиром, хлороформом и бензолом. Липиды можно условно разделить на простые и сложные.

Простые липиды в большинстве представлены сложными эфирами высших жирных кислот и трехатомного спирта глицерина — триглицеридами. Жирные кислоты имеют: 1) одинаковую для всех кислот группировку — карбоксильную группу (-СООН) и 2) радикал, которым они отличаются друг от друга. Радикал представляет собой цепочку из различного количества (от 14 до 22) группировок -СН 2 -. Иногда радикал жирной кислоты содержит одну или несколько двойных связей (-СН=СН-), такую жирную кислоту называют ненасыщенной . Если жирная кислота не имеет двойных связей, ее называют насыщенной . При образовании триглицерида каждая из трех гидроксильных групп глицерина вступает в реакцию конденсации с жирной кислотой с образованием трех сложноэфирных связей.

Если в триглицеридах преобладают насыщенные жирные кислоты , то при 20°С они — твердые; их называют жирами , они характерны для животных клеток. Если в триглицеридах преобладают ненасыщенные жирные кислоты , то при 20 °С они — жидкие; их называют маслами , они характерны для растительных клеток.

1 — триглицерид; 2 — сложноэфирная связь; 3 — ненасыщенная жирная кислота;
4 — гидрофильная головка; 5 — гидрофобный хвост.

Плотность триглицеридов ниже, чем у воды, поэтому в воде они всплывают, находятся на ее поверхности.

К простым липидам также относят воски — сложные эфиры высших жирных кислот и высокомолекулярных спиртов (обычно с четным числом атомов углерода).

Сложные липиды . К ним относят фосфолипиды, гликолипиды, липопротеины и др.

Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты. Принимают участие в формировании клеточных мембран.

Гликолипиды — см. выше.

Липопротеины — комплексные вещества, образующиеся в результате соединения липидов и белков.

Липоиды — жироподобные вещества. К ним относятся каротиноиды (фотосинтетические пигменты), стероидные гормоны (половые гормоны, минералокортикоиды, глюкокортикоиды), гиббереллины (ростовые вещества растений), жирорастворимые витамины (А, D, Е, К), холестерин, камфора и т.д.

Функции липидов

Функция Примеры и пояснения
Энергетическая Основная функция триглицеридов. При расщеплении 1 г липидов выделяется 38,9 кДж.
Структурная Фосфолипиды, гликолипиды и липопротеины принимают участие в образовании клеточных мембран.
Запасающая Жиры и масла являются резервным пищевым веществом у животных и растений. Важно для животных, впадающих в холодное время года в спячку или совершающих длительные переходы через местность, где нет источников питания.

Масла семян растений необходимы для обеспечения энергией проростка.

Защитная Прослойки жира и жировые капсулы обеспечивают амортизацию внутренних органов.

Слои воска используются в качестве водоотталкивающего покрытия у растений и животных.

Теплоизоляционная Подкожная жировая клетчатка препятствует оттоку тепла в окружающее пространство. Важно для водных млекопитающих или млекопитающих, обитающих в холодном климате.
Регуляторная Гиббереллины регулируют рост растений.

Половой гормон тестостерон отвечает за развитие мужских вторичных половых признаков.

Половой гормон эстроген отвечает за развитие женских вторичных половых признаков, регулирует менструальный цикл.

Минералокортикоиды (альдостерон и др.) контролируют водно-солевой обмен.

Глюкокортикоиды (кортизол и др.) принимают участие в регуляции углеводного и белкового обменов.

Источник метаболической воды При окислении 1 кг жира выделяется 1,1 кг воды. Важно для обитателей пустынь.
Каталитическая Жирорастворимые витамины A, D, E, K являются кофакторами ферментов, т.е. сами по себе эти витамины не обладают каталитической активностью, но без них ферменты не могут выполнять свои функции.

    Перейти к лекции №1 «Введение. Химические элементы клетки. Вода и другие неорганические соединения»

    Перейти к лекции №3 «Строение и функции белков. Ферменты»

Углеводы — органические вещества, молекулы которых состоят из атомов углерода, водорода и кислорода. Причем, водород и кислород в них стоит в тех соотношениях, что и в молекулах воды (1:2)
Общая формула углеводов C n (H 2 O) m , т. е. они как бы состоят из углерода и воды, отсюда и название класса, которое имеет исторические корни. Оно появилось на основе анализа первых известных углеводородов. В дальнейшем было установлено, что имеются углеводы, в молекулах которых нет соотношения 1H: 2O, например, дезоксирибоза — C 5 H 10 O 4 . Известны так же органические соединения, состав которых подходит к приведенной общей формуле, но которые не принадлежат к классу углеводов. К ним относятся, например формальдегид CH 2 O и уксусная кислота CH 3 COOH.
Однако, название «углеводороды» укоренилось и является общепризнанным для этих веществ.
Углеводороды по их способности гидролизоваться можно разделить на три основные группы: моно-, ди- и полисахариды.

Моносахариды — углеводы, которые не гидролизуются (не разлагаются водой). В свою очередь, в зависимости от числа атомов углерода. Моносахариды подразделяются на триозы (молекулы которых содержат три атома углерода), тетрозы (четыре атома), пентозы (пять), гексозы (шесть) и т. д.
В природе моносахариды предоставлены преимущественно пентозами и гексозами . К пентозам относятся, например, рибоза C 5 H 10 O 5 и дезоксирибоза (рибоза, у которой «отняли» атом кислорода) C 5 H 10 O 4 . Они входят в состав РНК и ДНК и определяют первую часть названий нуклеиновых кислот.
К гексозам, имеющим общую молекулярную формулу C 6 H 12 O 6 , относятся, например, глюкоза, фруктоза, галактоза.
Дисахариды – углеводы, которые гидролизуются с образованием двух молекул моносахаридов, например гексоз. Общую формулу подавляющего большинства дисахаридов вывести несложно: нужно «сложить» две формулы гексоз и «вычесть» из получившейся формулы молекулу воды – C 12 H 22 O 10 . Соответственно, можно записать и общее уравнение гидролиза:

C 12 H 22 O 10 + H 2 O → 2C 6 H 12 O 6
К дисахаридам относятся:
1) Сахароза (обычный пищевой сахар), которая при гидролизе образует одну молекулы глюкозы и молекулу фруктозы. Она содержится в большом количестве в сахарной свекле, сахарном тростнике (отсюда и названия – свекловичный и тростниковый сахар), клене (канадские первопроходцы добывали кленовый сахар), сахарной пальме, кукурузе и т. д.

2) Мальтоза (солодовый сахар), которая гидролизуется с образованием двух молекул глюкозы. Мальтозу можно получить при гидролизе крахмала под действием ферментов, содержащихся в солоде, — пророщенных, высушенных и размолотых зернах ячменя.
3) Лактоза (молочный сахар), которая гидролизуется с образованием молекул глюкозы и галактозы. Она содержится в молоке млекопитающих, обладает невысокой сладостью, и используется, как наполнитель в драже и аптечных таблеток.

Сладкий вкус разных моно- и дисахаридов различен. Так, самый сладкий моносахарид – фруктоза — в 1,5 раза слаще глюкозы, которую принимают за эталон. Сахароза (дисахарид), в свою очередь в 2 раза слаще глюкозы, и в 4-5 раз лактозы, которая почти безвкусна.

Полисахариды – крахмал, гликоген, декстрины, целлюлоза и т.д. – углеводы, которые гидролизуются с образованием множества молекул моносахаридов, чаще всего глюкозы.
Чтобы вывести формулу полисахаридов, надо от молекулы глюкозы «отнять» молекулу воды и записать выражение с индексом n: (C 6 H 10 O 5)n . Ведь именно за счет отщепления молекул воды в природе образуются ди- и полисахариды.
Роль углеводов в природе и их цена в жизни человека крайне важна. Образуясь в клетках растений в результате фотосинтеза, они выступают источником энергии для клеток животных. В первую очередь это относится к глюкозе.
Многие углеводы (крахмал, гликоген, сахароза) выполняют запасающую функцию, роль резерва питательных веществ.
Кислоты ДНК и РНК, в состав которых входят некоторые углеводы (пентозы-рибозы и дезоксирибоза), выполняют функции передачи наследственной информации.
Целлюлоза – строительный материал растительных клеток — играет роль каркаса для оболочек этих клеток. Другой полисахарид – хитин — выполняет аналогичную роль в клетках некоторых животных: образуется наружный скелет членистоногих (ракообразных), насекомых, паукообразных.
Углеводы в конечном итоге служат источником нашего питания: мы потребляет зерно, содержащее крахмал, или скармливаем его животным, в организме которых крахмал превращается в жиры и белки. Самая гигиеническая одежда изготовлена из целлюлозы или продуктов на ее основе: хлопка и льна, вискозного волокна, ацетатного шелка. Деревянные дома и мебель построены из той же целлюлозы, образующей древесину. В основе производства кино- и фотопленки все та же целлюлоза. Книги, газеты, письма, денежные банкноты – все это продукция целлюлозно-бумажной промышленности. Значит, углеводы обеспечивают нас самым необходимым для жизни: пищей, одеждой, кровом.
Кроме того, углеводы участвуют в построении сложных белок, ферментов, гормонов. Углеводами являются и такие жизненно необходимые вещества, как гепарин (он играет важнейшую роль – предотвращает свертываемость крови), агар-агар (его получают из морских водорослей и применяют в микробиологической и кондитерской промышленности – вспомните знаменитый торт «Птичье молоко»).
Необходимо подчеркнуть, что единственным видом энергии на Земле (помимо ядерной, разумеется) является энергия Солнца, а единственным способом ее аккумулирования для обеспечения жизнедеятельности всех живых организмов является процесс фотосинтеза, протекающий в клетках и приводящий к синтезу углеводов из воды и углекислого газа. Именно при этом превращении образуется кислород, без которого жизнь на нашей планете была бы невозможна:
6CO 2 + 6H 2 O → C 6 H 12 O 6 + 6O 2



Физические свойства и нахождение в природе

Глюкоза и фруктоза – твердые и бесцветные вещества кристаллические вещества. Глюкоза содержится в соке винограда (отсюда и название «виноградный сахар») вместе с фруктозой, которая содержится в некоторых фруктах и плодах (отсюда и название «фруктовый сахар»), составляет значительную часть меда. В крови человека и животных постоянно содержится около 0,1% глюкозы (80-120 мг в 100 мл крови). Наибольшая ее часть (около 70%) подвергается в тканях медленному окислению с выделением энергии и образованием конечных продуктов – воды и углекислого газа (процесс гликолиза):
C 6 H 12 O 6 + 6O 2 → 6CO 2 + 6H 2 O + 2920 кДж
Энергия, выделяемая при гликолизе, в значительной степени обеспечивает энергетические потребности живых организмов.
Повышение содержания глюкозы в крови уровня 180 мг на 100 мл свидетельствует о нарушении углеводного обмена и развитии опасного заболевания – сахарного диабета.

Строение молекулы глюкозы

О строении молекулы глюкоз можно судить на основании опытных данных. Она реагирует с карбоновыми кислотами, образуя сложные эфиры, содержащие от 1 до 5 остатков кислоты. Если раствор глюкозы прилить к свежеполученному гидроксиду меди(||), то осадок растворяется и получается ярко-синий раствор соединения меди, т. е. происходит качественная реакция на многоатомные спирты. Следовательно, глюкоза является многоатомным спиртом. Если же подогреть полученный раствор, то вновь выпадает осадок, то уже красноватого цвета, т.е. произойдет качественная реакция на альдегиды. Аналогично, если раствор глюкозы разогреть с аммиачным раствором оксида серебра, то произойдет реакция «серебряного зеркала». Следовательно, глюкоза является одновременно многоатомным спиртом и альдегидом — альдегидоспиртом . Попробуем вывести структурную формулу глюкозы. Всего атомов углерода в молекуле C 6 H 12 O 6 шесть. Один атом входит в состав альдегидной группы:
Остальные пять атомов связываются с гидроксигруппами. И наконец с учетом того, что углерод четырехвалентен, расположим атомы водорода:
или:
Однако установлено, что в растворе глюкозы помимо линейных(альдегидных) молекул существуют молекулы циклического строения, из которых состоит кристаллическая глюкоза. Превращение молекул линейной формы в циклическую можно объяснить, если вспомнить, что атомы углерода могут свободно вращаться вокруг σ- связей, расположенных под углом 109 о 28 / при этом альдегидная группа (1-й атом углерода) может приблизиться к гидроксильной группе пятого атома углерода. В первой, под влиянием гидроксигруппы разрывается π – связь: к атому кислорода присоединяется атом водорода, и «потерявший» этот атом кислород гидроксигруппы замыкает цикл.
В результате такой перегруппировки атомов образуется циклическая молекула. Циклическая формула показывает не только порядок связи атомов, но и их пространственное расположение. В результате взаимодействия первого и пятого атомов углерода, появляется новая гидроксигруппа у первого атома, которая может занять в пространстве два положения: над и под плоскостью цикла, а потому возможны две циклические формы глюкозы:
1) α- форма глюкозы – гидроксильные группы при первом и втором атомах углерода расположены по одну сторону кольца молекулы;
2) β- формы глюкозы – гидроксильные группы находятся по разные стороны кольца молекулы:
В водном растворе глюкозы в динамическом равновесии находятся три ее изомерные формы: циклическая α- форма, линейная (альдегидная) форма и циклическая β- форма.
В установившемся динамическом равновесии преобладает β-форма (около 63%), так как она энергетически предпочтительнее — у нее ОН- группы у первого и второго углеродных атомов по разные стороны цикла. У α-формы (около 37%) ОН-группы у тех же углеродных атомов расположены по одну сторону плоскости, поэтому она энергетически меньше устойчива, чем β-форма. Доля же линейной формы в равновесии очень мала (всего около 0,0026%).
Динамическое равновесие можно сместить. Например, при действии на глюкозу аммиачного раствора оксида серебра количество ее линейной (альдегидной) формы, которой в растворе очень мало, пополняется все время за счет циклических форм, и глюкоза полностью подвергается окислению до глюконовой кислоты.
Изомером альдегидспирта глюкозы является кетоноспирт – фруктоза.

Химические свойства глюкозы

Химические свойства глюкозы, как и любого органического вещества, определяются ее строением. Глюкоза обладает двойственной функцией, являясь и альдегидом, и многоатомным спиртом, поэтому для нее характерны свойства и многоатомных спиртов и альдегидов.
Реакции глюкозы, как многоатомного спирта
Глюкоза дает качественную реакцию многоатомных спиртов (вспомните глицерин) со свежеполученным гидроксидом меди (ǀǀ), образуя ярко-синий раствор соединения меди (ǀǀ).
Глюкоза, подобно спиртам, может образовывать сложные эфиры.
Реакции глюкозы, как альдегида
1. Окисление альдегидной группы. Глюкоза, как альдегид, способна окисляться к соответствующую (глюконовую) кислоту и давать качественные реакции на альдегиды. Реакция «Серебряного зеркала» (при нагревании):
CH 2 -OH-(CHOH) 4 -COH + Ag 2 O → CH 2 OH-(CHOH) 4 -COOH + 2Ag↓
Реакция со свежеполученным Cu(OH) 2 при нагревании:
CH 2 -OH-(CHOH) 4 -COH + 2 Cu(OH) 2 → CH 2 -OH-(CHOH) 4 -COOH + Cu 2 O↓ +H 2 O

2. Восстановление альдегидной группы. Глюкоза может восстанавливаться в соответствующий спирт (сорбит):
CH 2 -OH-(CHOH) 4 -COH + H 2 → CH 2 -OH-(CHOH) 4 — CH 2 -OH
Реакции брожения
Эти реакции протекают под действием особых биологических катализаторов белковой природы — ферментов.

1. Спиртовое брожение:
C 6 H 12 O 6 → 2C 2 H 5 OH + 2CO 2
Издавна применяемое человеком для получения этилового спирта и алкогольных напитков.
2. Молочнокислое брожение:
которое составляет основу жизнедеятельности молочнокислых бактерий и происходит при скисании молока, квашении капусты и огурцов, силосовании зеленых кормов





Loading...Loading...