Элементы проблемного обучения на уроках информатики. Методические приемы, используемые на различных этапах урока информатики «Решение ситуационных задач»

Мотивация на уроках информатики

Движущей силой любой деятельности (в том числе и учебной) является ее мотивация.
Согласно Википедии: «Мотивация - это побуждение к действию; динамический процесс психофизиологического плана, управляющий поведением человека, определяющий его направленность, организованность, активность и устойчивость; способность человека деятельно удовлетворять свои потребности».
В педагогике существует ряд методов, направленных на формирование положительной мотивации обучения за счет активизации деятельности обучаемых.

I. Научно-исследовательская деятельность в школе

Научно-исследовательская деятельность - один из способов познания человеком окружающего мира. Она направлена на образование, воспитание и развитие учащихся, на стимулирование у ребёнка познавательной активности, цивилизованных творческих задатков, формирование логического и научного мышления.
Приобщение ребят к научной деятельности, разработке проектов, выполнению творческих заданий готовит ребят к исследовательской деятельности в старших классах и в вузе, формирует социально-активную жизненную позицию. Цель таких заданий - совершенствование знаний, расширение научного кругозора, опытническая деятельность.
Вообще, понятие «деятельность» имеет значение «созидание, обнаружение, проявление и определение субъекта» (Рубинштейн С.Л., Брушлинский А.В.).
Исследование - это творческий процесс познания мира, связанный с решением учащимися творческой исследовательской задачи.
Таким образом, исследовательская деятельность - это образовательная работа, связанная с решением учащимися творческой исследовательской задачи.
Существует пять основных видов творческих работ школьников:
1. Информационно-реферативные - написанные на основе нескольких литературных источников с целью наиболее полного освещения какой-либо проблемы.
2. Проблемно-реферативные - предполагающие сопоставление данных разных литературных источников, на основе которых даётся собственная трактовка поставленной проблемы. (Хорошо выполненная проблемно-реферативная работа может считаться исследовательской).
3. Экспериментальные - основанные на самостоятельно проведённом эксперименте.
4. Натуралистические и описательные - связанные с наблюдением и описанием какого-либо явления.
5. Исследовательские - в результате которых получен собственный экспериментальный материал, позволяющий сделать анализ и выводы.
Научно-исследовательская работа позволяет каждому ученику испытать, испробовать, выявить и актуализировать хотя бы некоторые из своих талантов-дарований.
Во-первых , включиться в новую для него деятельность подросток может лишь в том случае, если ему предоставляется возможность участвовать в ней в качестве одного из её субъектов.
Во-вторых , эта деятельность, особенно на начальном этапе, должна быть направлена на достижение вполне определённых, понятных ребёнку целей, на решение конкретных задач.
В-третьих , ученик должен ощущать социальную значимость этой деятельности.
Дело учителя - создать и поддержать творческую атмосферу в этой работе.

II. Творческие задания на уроках

Основной целью информатики, является не только обучение работе на компьютере, но и использование его как средства для развития ученика. Несомненно, формирование и развитие творческих способностей учащихся через познавательные и развивающие игры, через выполнение различных творческих заданий - важный этап на пути к собственно научно-исследовательской деятельности.
На уроках информатики учащиеся знакомятся со множеством новых понятий и терминов: алгоритм, информация, курсор, процессор и т. д. Дети этого возраста способны достаточно хорошо запомнить большой объём материала, «вызубрить», т.е. изучить без осознания. В результате, когда на последующих этапах требуется усвоить новую информацию на базе уже выученной, этой базы может не быть или она будет непрочная: механически выученный материал не является хорошей опорой. Кроме того, информатику невозможно выучить, запомнить без выделения и осознания взаимосвязей, без формирования логического мышления.
Один из методов, способствующих осознанию материала, – метод образного представления . Большинство детей хорошо воспринимают информацию, которая представлена в форме занимательного сюжета: сказки, рассказа и т.д.
Например:
Тема клавиатура. Я использую программу «Емеля» в которой щука подарив Емеле компьютер обучает его работе с устройствами ввода.
Тема файловая система. Дерево каталогов мы сравниваем с генеалогическим деревом. Ребята с большим удовольствием изображают древо своей семьи (узнавая новое о своих предках) и очень быстро запоминают понятия: корневой каталог, родительский каталог и место положения файлов на диске.
Определяя место положения файла на диске, мы ищем клад зарытый пиратами.

III. Творческие домашние задания

Во-первых, разно уровневое домашнее задание является одним из наиболее эффективных способов повторения изученных ранее тем.
Первый уровень – обязательный минимум – оно посильно любому ученику.
Второй уровень – тренировочный. Его выполняют ученики, которые хотят хорошо знать предмет и без особых трудностей справляются с программой.
Третий уровень – творческое домашнее задание. Оно выполняется на добровольных началах и стимулируется учителем высокой оценкой или похвалой.
Диапазон творческих заданий широк:
1. Кроссворды, чайнворды, ребусы, комиксы, плакаты (результаты на стенде).
2. Тема «Компьютер будущего» вдохновила многих на свой проект. Причём по разнообразию идей семиклассники не уступали девятиклассникам. На уроке была проведена пресс-конференция XXV века, где ребята выступали со своими докладами в роли профессоров (результаты на стенде).
3. При изучении темы «Алгоритмы и исполнители» ребята составляют алгоритмы для фантастических роботов (результаты на стенде).
4. В качестве примера организации литературного творчества детей при изучении информатики можно привести такие задания: написать сочинение «Про алгоритм, файл, каталог и...». Главные герои произведения - понятия информатики, с которыми дети познакомились к этому времени. Характеры выбранных персонажей должны соответствовать содержанию описываемого понятия (например, для Алгоритма, скорее всего, будут характерны последовательность аккуратность, строгость и т.д.)
5. При изучении способов передачи информации, мы осваиваем различные приёмы её кодирования; ученики сами изобретают свои коды, при этом, вспоминая, где они встречали коды для шифровки букв. И здесь на помощь приходят известные литературные произведения. В рассказе Артура Конан Дойля «Пляшущие человечки» преступник применяет оригинальный код для записи своих угроз. В рассказе Эдгара По «Золотой жук» главный герой находит сокровища, разгадав шифрованное письмо. С примером закодированной информации учащиеся встречаются и в «Путешествии к центру земли» Жюля Верна.
Прочитав эти рассказы, можно заполнить табличку «пляшущих человечков» и расшифровать с помощью её надпись.
Самим написать тайную записку, используя этот код.
Придумать свои собственные способы кодирования информации.
6. Знакомясь с различными системами счисления, ребята учатся переводить числа из одной системы счисления и при этом выполняют различные творческие задания. Например: перевести координаты точек из двоичной системы счисления в десятичную. Отметить точки на координатной плоскости и соединив их получить симпатичного зверька. Ещё больше ребятам нравиться придумывать такие задания самим.
7. А с каким удовольствием учащиеся 7 класса при повторении и закреплении изученных тем, таких, как «Системы счисления», «Файловая система», «Устройство ЭВМ», «Алгоритмы и исполнители» самостоятельно придумывают вопросы к викторинам, проводят конкурсы «Что, где, когда?», «Миллионер», КВН, «Слабое звено». Дома готовят вопросы и проводят игры на уроках
8. Старшеклассники оказывают неоценимую помощь, создавая презентации и обучающие программы, позволяющие другим ученикам осваивать.
9. У меня есть ученики, которым я могу дать опережающее домашнее задание. Например, подготовить тему следующего урока и самостоятельно его провести.
10. Конечно же, нельзя переоценить возможности традиционных методов исследовательской деятельности: проблемно-реферативного и информационно-реферативного. Например, по таким темам, как «Роль компьютера в современном обществе», «История создания и развития компьютера», «Компьютерные преступления», «Компьютерные вирусы» и др. ученики готовят эти работы с целью более полного освещения данной темы и высказывают собственную трактовку поставленной проблемы.

IV. Коллективное творчество

Результатом изучения темы «Графический редактор» является проект «Магазин игрушек». При выполнении этого творческого задания не только закрепляется изученный материал по данной теме, но и осуществляется обмен информацией по сети.
Сначала ребята активно обсуждают, как должен выглядеть конечный результат и распределяют работу. После выполнения отдельных фрагментов рисунка каждый ученик собирает по сети картинку у себя на экране компьютера. При выполнении этого задания используется математический термин «симметрия». После того как освоены первичные навыки работы в локальной сети, школьники применяют их в таких прикладных проектах, как «Вернисаж индивидуальных или групповых рисунков», «Выпуск стенгазеты» (при помощи текстового редактора) и др.
Работая в текстовом редакторе Microsoft Word, ребята составляют различные кроссворды и сканворды с использованием коллекции Clip Art, таблиц, графики и других возможностей данной программы.
Изучение темы «База данных» также предоставляет огромные возможности для творческой и познавательной деятельности. Учениками составляются:
записные книжки, где указаны не только имена и адреса друзей, но и их хобби, вид спорта, которым они занимаются, любимая музыка книги, фильмы и др.
банк данных любимых артистов (певцов) с перечислением самых известных их ролей (альбомов, песен), фактов из их биографии и др. _

V. Проблемное обучение

Огромное значение в формировании познавательной активности имеет проблемное обучение. Чем оно привлекает?
1. Новую информацию учащиеся получают в ходе решения теоретических и практических проблем.
2. В ходе решения проблемы учащийся преодолевает все трудности, его активность и самостоятельность достигают высокого уровня.
3. Темп передачи информации зависит от учащегося или группы учащихся.
Повышенная активность учащихся способствует развитию позитивных мотивов и уменьшает необходимость формальной проверки результатов.
4. Результаты обучения относительно высокие и устойчивые. Учащиеся легче применяют полученные знания в новых ситуациях и одновременно развивают свои умения и творческие способности.
Техника проблемного обучения включает в себя такую деятельность учителя и учащегося, как:
Организация проблемной ситуации.
Формирование проблем.
Индивидуальное или групповое решение проблем учащимися.
Проверка полученных решений, а также систематизация, закрепление и применение вновь приобретенных знаний в теоретической и практической деятельности.

Вообще, в практической реализации проблемного обучения можно выделить пять этапов.
составление плана решения проблемы;
выдвижение и обоснование гипотезы;
доказательство гипотезы;
проверка решения проблемы;
повторение и анализ процесса решения.

Приведу пример реализации идей проблемного обучения при изучении темы:
1. Тема «Алгоритмы». Как поменять местами содержимое двух кружек. (Добавить ещё одну).
2. Тема «Графический редактор». Рисуем виноградную гроздь. Как быстрее нарисовать большое количество одинаковых ягод? (Операция копирования).
3. Программирование, изучаем тему «Циклические операторы», проблема: как подсчитать сумму цифр числа, где одна и та же операция должна использоваться несколько раз.
И т.д.

VI. Дистанционное (программное) обучение

Компьютеры уже стали привычным атрибутом в школе. В связи, с чем учителя стараются найти способы их применения, позволяющие существенно повысить качество усвоения материала учащимися и эффективность их мышления. Компьютеры могут вполне успешно выполнять функцию личных репетиторов для учеников, что делает процесс обучения более быстрым и эффективным. Компьютерные программы дают возможность осуществлять непосредственное взаимодействие между учащимся и машиной, реализуя технику программированного обучения, которое позволяет преподавать материал в определенной последовательности, регулировать объем каждого урока в зависимости от индивидуальных особенностей ученика.
Я использую такой способ обучения при изучении ряда тем, таких как:
Архитектура компьютера;
История возникновения компьютерной техники;
Роль компьютера в современном обществе;
и т.д.

VII. Межпредметные связи

Трудно переоценить значение обучающих программ, как по информатике, так и по другим дисциплинам; таким как география и английский язык, где ученик, играя, экспериментируя, получает знания методом проб и ошибок. Ученик имеет право на ошибки и собственное мнение.
Программа TRAVEL – это путешествие по всем странам и материкам, история их открытия. Знакомство с биографией путешественников. Работая с ней, ребята одновременно учатся работать с компьютером, и знакомятся с важными географическими открытиями, учатся пользоваться справочниками и гипертекстом.
English – это путешествие по волшебной стране. Через элементы игры ребята получают знания по английскому языку и совершенствуют навыки работы устройствами ввода, учатся пользоваться справочниками.
Изучение темы «Программирование» даёт возможность решать на компьютере задания из курса физики, геометрии, алгебры.
Тема «Компьютерное моделирование» открывает возможности для решения широкого спектра задач из разных школьных курсов: биологических, экономических и т.д.
Здесь мне хочется остановиться и ещё раз сделать упор на то, что у нас тесная связь с предметами: (геометрия, алгебра, литература, русский язык, география, английский язык, физика), мы опираемся на знания, полученные на этих уроках, а иногда даём начальные понятия раньше, чем тема изучается учащимися.
Например: Графика в Бейсике 8 класс (понятия: параллелограмм, эллипс, дуга, измеряем углы в радианах)

Резюмируя изложенное, можно сказать, что поскольку дети являются активными исследователями всего нового, необходимо так строить учебный процесс, чтобы он имел характер путешествия по неизведанной стране, где на каждом шагу поджидают удивительные открытия. Учение само должно нести награду за труды в виде новых знаний. Внешнее подкрепление, например, похвала и одобрение, может оказаться не самой оптимальной мотивацией учения. Учителям следует поощрять детей делать логические выводы о реалиях этого мира и связях между ними, но не делать это за них и преподносить готовые формулировки в виде непреложных истин.

Потребность в получении новых знаний заложена в маленьких детях природой. Как считают психологи, к среднему звену школы эта потребность резко снижается, так как ребенок уже переполнен информацией. Здесь возможно использование других естественных для данного возраста потребностей ребенка: потребность в коммуникациях, в самовыражении и самореализации, потребность в новых видах деятельности

Дети могут плохо учиться в результате сознательного избегания обучения. Некоторые, достаточно смышленые дети, отказываются от образования, считая, что оно не стоит той работы, которую им приходится совершать для его получения.


Известно, что под мотивацией вообще понимается процессы, определяющие движение по направлению к поставленной цели, а также факторы (внешние и внутренние), которые влияют на активность и пассивность поведения.


Для повышения мотивации необходимо:

    обеспечить у учеников ощущение продвижения вперед, переживание успеха в деятельности, для чего необходимо правильно подбирать уровень сложности заданий и заслуженно оценивать результат деятельности;

    использовать все возможности учебного материала для того, чтобы заинтересовать учеников, ставить проблемы, активизировать самостоятельное мышление;

    организовать сотрудничество учеников на уроке, взаимопомощь, позитивное отношение к предмету в целом;

    самому правильно строить отношения с учениками, быть заинтересованным в их успехах;

    видеть индивидуальность каждого ученика, мотивировать каждого, опираясь на его личные мотивы.

Все мы знаем о перечисленных выше условиях для развития устойчивой мотивации к учению. Но по-прежнему остро стоит вопрос, как осуществить это на практике.

В начале изучения нового курса, раздела или темы, мы часто произносим примерно следующие слова: "В современном обществе человек не может быть успешен без знаний информатики (физики, химии, биологии, истории, …- подставить сюда можно любой предмет из школьного расписания)”. А в действительности дети видят, что многие малообразованные люди живут куда лучше школьных учителей и преподавателей ВУЗов. Так что такой прием создания мотивации, увы, в наше время малоэффективен. Вопреки распространенному мнению о высоком уровне интереса учащихся к информатике, с каждым годом поддерживать этот интерес становится всё труднее. Нередко от учеников можно услышать фразу "Зачем мне информатика? Я не собираюсь быть программистом”. Обычно это происходит при необходимости изучать математические аспекты информатики (теория алгоритмов, логика, методы вычислений, т.е. то, что вызывает трудности в понимании).

Многие годы мотивом для изучения информатики, в первую очередь, выступал интерес к компьютеру. Однако с каждым днем для большинства детей компьютер становится фактически бытовым прибором и теряет свой таинственный ореол, а вместе с ним и мотивационную силу.

Вы, наверное, часто замечали, что слова "Я не буду это учить, потому что это никогда не понадобится”, звучат гораздо чаще, чем "Я не буду учить, потому что это неинтересно”. Таким образом, можно взять на вооружение тот факт, что в создании мотивации ИНТЕРЕС всегда имеет приоритет над прагматикой, особенно среди учащихся младшего и среднего звена. В старшей школе в соответствии с возрастными особенностями мотивация должна носить преимущественно прагматический характер.

Проведя анализ статей, связанных с мотивацией на уроках, мною было замечено, что существуюет ряд приёмов, которые позволяют смотивировать детей к учёбе. Каждый из этих приёмов, осознанно или на интуитивном уровне применяет каждый учитель во время проведения своих уроков. Мне хотелось бы рассказать о тех приемах и методах создания мотивации, которые я применяю на своих уроках и которые, на мой взгляд, позволяют наиболее эффективно изучать материал.

Прием первый: обращение к жизненному опыту детей.

Прием заключается в том, что учитель обсуждает с учащимися хорошо знакомые им ситуации, понимание сути которых возможно лишь при изучении предлагаемого материала. Необходимо только, чтобы ситуация была действительно жизненной и интересной, а не надуманной.

Т ак, при изучении тем по Базам данных в качестве яркого примера можно привести следующую ситуацию - приобретение какого-либо товара. Вначале, вместе с детьми необходимо определиться с видом приобретаемого товара. Например, это будет монитор. Затем решается вопрос о его технических характеристиках (заметим еще одно преимущество такой беседы - дети незаметно для себя одновременно повторяют ранее изученный материал из темы “Аппаратное обеспечение ПК”). Далее необходимо рассмотреть все возможности приобретения монитора с характеристиками, названными детьми. Предлагаемые детьми варианты весьма разнообразны, но непременно прозвучит такой способ как поиск фирмы, специализирующейся на продажах оргтехники посредством сети Интернет. Таким образом, есть возможность поиска конкретной информации в базах данных, что, кстати, и является основной темой урока.

Кроме того, обращение к опыту детей - это не только прием для создания мотивации. Более важно то, учащиеся видят применимость получаемых ими знаний в практической деятельности. Ведь не секрет, что для многих школьных дисциплин ученики не имеют ни малейшего представления, как они могут применять получаемые знания. О чём, кстати, я стараюсь говорить практически на каждом уроке - это как резюме ко многим темам. Почему данная тема важна и как нам это пригодится в жизни.

Прием второй: создание проблемной ситуации

Бесспорно, что для многих из нас этот прием рассматривается как универсальный. Состоит он в том, что перед учащимися ставится проблема, преодолевая которую, ученик осваивает знания, умения и навыки, которые ему необходимо усвоить согласно программе.

Пример ы

    Очень эффективно “срабатывает” преднамеренное создание проблемной ситуации в названии темы урока.

Интересная формулировка тем встречается в учебнике «Информатика и ИКТ. Начальный уровень» под ред. Макаровой Н.В. «Что скрывается в строке меню?», «Один помощник - хорошо, а два - лучше», «Алгоритмы в нашей жизни». Но уже в среднем и старшем звене таких тем не встречается.Поэтому я сама преобразовываю тему, формулируя ее проблемно.«Как измерить количество информации?» вместо “Единицы измерения информации”.“Алгоритм - это … ” вместо обычного “Понятие алгоритма”.«Функции «редактора» вместо «Редактирование документа»2) Вопросы, задаваемые в ходе урока.В учебниках информатики предложено много заданий и вопросов. Например:

  • Что такое чип?

Все эти вопросы направлены на то, чтобы, прочитав учебник или выслушав объяснение учителя, дети могли воспроизвести информацию, которую они поняли и запомнили. В действие включаются такие познавательные процессы, как внимание, восприятие, память, представление. Но можно ли утверждать, что, отвечая на эти вопросы, дети мыслят? воображают? Скорее всего - нет. Почему? Потому что вопросы носят репродуктивный характер и не включают школьников в состояние умственного затруднения, противоречия. Иначе говоря, вопросы не создают проблемной ситуации. Очевидно, что без репродуктивных вопросов в обучении не обойтись, так как они позволяют контролировать степень понимания и усвоения школьниками информации, фактического материала. Известно, что "пустая голова не рассуждает" (

Что такое информационная модель? Можно ли эту модель назвать информационной?
Какие действия можно выполнять над папками? Какие действия можно выполнять над папками, но нельзя над файлами (или наоборот)?
Что такое чип? Чип - это микропроцессор?
Назовите основные устройства компьютера. Мышь является основным устройством компьютера?
Что понимается под производительностью компьютера? Количество элементарных операций, выполняемых за одну минуту - это производительность компьютера?

П.П. Блонский). Однако нельзя обходиться только репродуктивными вопросами, можно их переформулировать, превратив их в проблемные. Эти вопросы уже являются проблемными. Их основная особенность состоит в том, что они вызывают у субъекта, школьника состояние осознаваемого им противоречия между знанием и незнанием, выходом из которого может стать только поиск ответа на вопрос. Это состояние и есть проблемная ситуация. 3) Вашему вниманию предлагается проблемная задача с противоречивым способом решения.Изучая тему «Виды адресации в электронной таблице MS Excel» (9 класс), предлагаю задачу по суммированию чисел из двух столбцов. Непременное требование задачи - формулу суммы обязательно копировать. Решение задачи проходит без видимых проблем с использованием функции автозаполнения.Далее предлагаю решить эту же задачу, внеся небольшие изменнеия - добавив ещё один столбец - «сумма в руб» и ячейку с текущим курсом доллара. Условие копирования формулы сохраняется.Для решения задачи ученики пишут формулу =E6*G1.При копировании формулы в столбце F будут получаться самые неожиданные результаты. При помощи вопросов (что у вас получается в столбце F? Что должно получаться? Почему вы не получаете то, что нужно?) разговор подводится к понятию «абсолютная адресация».Таким образом, данная задача создаёт проблемную ситуацию, которая была выстроена мною целенаправленно.

Третий прием: решение нестандартных задач.

Задачи такого характера предлагаются учащимся либо в качестве разминки в начале урока, либо для разрядки, смены вида работы в течение урока, а иногда и для дополнительного решения дома. Как правило, я использую такие задачи для мотивации учебной деятельности при изучении тем «Системы счисления», «Кодирование информации », «Логика», учитывая такое возрастное качество ребят, как любопытство.

Практически невозможно объяснить ученикам, где в реальной жизни им может пригодиться умение переводить числа из одной системы счисления в другую, и не представляет никакого интереса для учащихся. Но тема «Системы счисления» есть в существующем образовательном стандарте, а значит, обязательна к изучению. Для повышения интереса к изучению этой темы использую следующие задачи:

Пример 1:

В декартовой системе координат постройте фигуры по точкам, координаты которых вы получите, переведя соответствующие пары чисел в заданные системы счисления.

При изучении темы «Кодирование информации» (5 класс) показываю ребятам, как можно зашифровать текст и изображения. Это очень нравится детям.

Прим ер 2 :

Пример 3 . «О познай пословицу»

Перед вами программист ские версии известных русских пословиц и поговорок. Попробуйте н азвать, как они звучат в оригинале

1. Скажи мне, какой у тебя компьютер, и я скажу, кто ты (Скажи мне, кто твой друг и я скажу, кто ты )

2. Компьютер памятью не испортишь (Кашу маслом не испортишь )

3. Не Intelом единым жив компьютерный мир (Не хлебом единым жив человек )

4. Бит байт бережет (Копейка рубль бережет )

5. Вирусов бояться - в Интернет не ходить (Волков бояться - в лес не ходить )

Пример 4 Ребусы.

При изучении темы «Решение логических задач» (10 класс) рассказываю ребятам о «Задаче Эйнштейна». Во-первых, сама фамилия этого учёного уже привлекает внимание ребят. А когда они самостоятельно решают эту задачу, у них возникает ситуация успеха и кажется, что все остальные задачи им по плечу.

Пример:

Загадка Эйнштейна — известная логическая задача, авторство которой по распространённому в Интернете, вероятно неправильному, мнению приписывается Альберту Эйнштейну (иногда Льюису Кэрролу). По легенде эта головоломка была создана Альбертом Эйнштейном в годы его детства. Также бытует мнение, что она использовалась Эйнштейном для проверки кандидатов в ассистенты на способность к логическому мышлению.

Некоторые приписывают Эйнштейну рассуждение, в котором тот утверждает, что лишь два процента населения земного шара способны оперировать в уме закономерностями, связанными сразу с пятью признаками. Как частное следствие этого, приведённая головоломка может быть решена без использования бумаги лишь теми, кто принадлежит к этим двум процентам.

На одной улице подряд стоят пять домов, каждый — своего цвета. В каждом живёт человек, все пять — разных национальностей. Каждый человек предпочитает уникальную марку сигарет, напиток и домашнее животное. Кроме того:

Норвежец живёт в первом доме.

Англичанин живёт в красном доме.

Зелёный дом находится слева от белого, рядом с ним.

Датчанин пьёт чай.

Тот, кто курит Marlboro, живёт рядом с тем, кто выращивает кошек.

Тот, кто живёт в жёлтом доме, курит Dunhill.

Немец курит Rothmans.

Тот, кто живёт в центре, пьёт молоко.

Сосед того, кто курит Marlboro, пьёт воду.

Тот, кто курит Pall Mall, выращивает птиц.

Швед выращивает собак.

Норвежец живёт рядом с синим домом.

Тот, кто выращивает лошадей, живёт в синем доме.

Тот, кто курит Winfield, пьет пиво.

В зелёном доме пьют кофе.

Вопрос:

Кто разводит рыбок?


Четвёртый прием: исследовательские и практико-ориентированные проекты.

Создание проекта - процесс сложный, но он побуждает к исследовательской и поисковой деятельности. В подобной работе с интересом участвуют все учащиеся. Данный вид учебной деятельности позволяет развивать у учеников логическое мышление, формирует общеучебные умения и навыки. Ранее бесцветные, порой не подкрепляемые даже иллюстрациями выступления превращаются в яркие и запоминающиеся. В процессе демонстрации своих наработок обучающиеся приобретают опыт публичных выступлений , который, безусловно, пригодится им в дальнейшем. Вовлечение учащегося в творческую работу, развивает у него умение самостоятельно собирать информационно- иллюстративный материал, творческую смекалку, способности дизайнерского оформления, а самое главное - у него появляется удовлетворение от результатов своего труда и чувство самодостаточности, что является для старшеклассника первостепенным мотивом.

Важным мотивом для учащихся среднего звена при изучении таких тем, как «Компьютерная графика и анимация», «Создание презентаций», является выполнение проектов по созданию демонстрационных материалов к урокам в начальной школе.

Пример.

Иногда на уроках необходимо выполнить небольшую презентацию -проект. И, если есть возможность - стараюсь менять ребят группами, чтобы они смотрели, что получилось у их одноклассников при том же самомо наборе начальных данных. Таким, образом, в начале следующего урока можно подвести итог, о многообразии использования различных средств (например презентаций) и обязательно показать такое действие. Которое никто из ребят не использовал (как правило это движение по зададнной траектории)

Так, например, в 8 классе мы с ребятами делали проект «тетрис ». При изучении раздела «Средства мультимедиа». Работая с презентациями ученикам кажется, что они уже всё знают и порой им неинтересно создавать презентации.

См презентацию 5 класс

"Этот процесс ор нитологи называют миграцией”

"Этот старинный комод ем у достался в наследство от бабушки”

"Он всегда имел за пас каль куляторов”

Шестой прием: кроссворды, сканворды, ребусы и т.п.

Для контроля учебных достижений широко используются привычные для детей (и учителей!) такие способы контроля знаний, как контрольные, самостоятельные работы, диктанты и т.д., Но, проверить знания учеников можно, предложив им работу как по отгадыванию кроссвордов, так и по самостоятельной разработке таковых. Например, изучив какой-нибудь раздел, в качестве итоговой работы ученикам необходимо создать кроссворд по одной из тем данного раздела, используя таблицу Word или Excel. В качестве поощрения можно добавлять баллы за оригинальность созданного кроссворда.

Также очень эффективен, особенно, в младшем и среднем звене такой вид работы как написание сказки, фантастической истории или рассказа, главными героями которых могут являться изученные на уроках устройства компьютера, программы и т.д

Очень важен такой фактор формирования положительной мотивации, о котором нельзя не сказать, это доброжелательный настрой урока. Для этого нужно уделять внимание каждому ученику, нужно хвалить детей за каждый новый, пусть даже незначительный, но полученный ими самими результат. Учитель должен вести себ я корректно и всегда приходить на помощь к ребенку. Именно так я и стараюсь проводить свои уроки. И это еще один шаг на пути формирования положительной мотивации учения.

Современные профессии, предлагаемые выпускникам учебных заведений, становятся все более интеллектоемкими.

Информационные технологии, предъявляющие высокие требования к интеллекту работников, занимают лидирующее положение на международном рынке труда. Но, если навыки работы с конкретным техническим устройством можно приобрести непосредственно на рабочем месте, то мышление, не развитое в определенные природой сроки, таковым и останется.

Поэтому для подготовки детей к жизни в современном информационном обществе в первую очередь необходимо развивать логическое мышление, способность к анализу (вычленению структуры объекта, выявлению взаимосвязей, осознанию принципов организации) и синтезу (созданию новых схем, структур и моделей).

Информатика - одна из фундаментальных отраслей научного знания, формирующая системно-информационный подход к анализу окружающего мира, изучающая информационные процессы, методы и средства получения, преобразования, передачи, хранения и использования информации.

Перед курсом основ информатики, как общеобразовательным учебным предметом, стоит комплекс учебно-воспитательных задач, которые определяются спецификой ее вклада в решение основных задач общего образования человека.

  1. Формирование основ научного мировоззрения. В данном случае формирование представлений об информации (информационных процессах) как одного из трех основополагающих понятий: вещества, энергии, информации, на основе которых строится современная научная картина мира.
  2. Развитие теоретического, творческого мышления, а также формирование нового типа мышления, так называемого операционного (модульно-рефлексивного) мышления, направленного на выбор оптимальных решений.

Во многом роль обучения информатике в развитии мышления обусловлена современными разработками в области объективно-ориентированном моделировании и проектировании, опирающемся на свойственное человеку понятийное мышление.

Умение для любой предметной области выделить систему понятий, представить их в виде совокупности атрибутов и действий, описать алгоритм действий и схемы логического вывода (т.е. то, что происходит при информационно-логическом моделировании) улучшает ориентацию человека в этой предметной области и свидетельствует о его развитом логическом мышлении.

С простейшими «прообразами» информационно-логического моделирования человек имеет дело даже в бескомпьютерном быту: кулинарный рецепт, руководство по эксплуатации пылесоса - все это попытки дать описание реального объекта или процесса. Чем точнее описание, чем легче с ним иметь дело другому человеку. Чем больше в нем ошибок и неопределенностей, тем больше простора для «творческих озарений» исполнителя и тем выше вероятность неадекватного результата.

В области информатики конечным потребителем подобного описания становится не человек, а компьютер, лишенный интуиции и озарений. Поэтому описание должно быть формированным, т.е. составленным с соблюдением определенных правил.

Такое формализованное описание и является информационно-логической моделью.

Изучение курса информатики предполагает выработку у учащихся логического мышления и решению задачи с использованием алгоритмического и эвристического подходов, с применением вычислительной техники в качестве средства автоматизации работы с информацией.

Итак, развитие логического мышления учащихся - одна из важных и актуальных проблем педагогической науки и практики обучения в школе.

Целью данной работы является исследование существующих приемов мыслительной деятельности учащихся на уроках информатики.

изучить основные закономерности развития мышления учащихся общеобразовательных школ;

провести классификацию различных видов мышления, используемых учащимися в зависимости от поставленной перед ними задачи;

выделить основные этапы решения проблемной ситуации;

провести обзор основных типов заданий для развития логического мышления на уроках информатики.

Глава 1. Мышление

1.1 Основные закономерности развития мышления

Развивающее обучение в широком смысле слова означает совокупное формирование умственных, волевых и эмоциональных качеств личности, способствующих ее самообразованию, тесно связанному с совершенствованием процесса мышления: только самостоятельно осмысляя учебную или жизненную задачу, школьник вырабатывает свой собственный способ умственной деятельности, находит индивидуальный стиль работы, закрепляет навыки пользование мыслительными операциями.

В ряде педагогических исследований последних лет особое внимание уделяется специальному формированию мышления, целенаправленному развитию интеллектуальных умений, иначе говоря, обучению мыслительным действиям, приемам познавательного поиска.

В задачу мышления входит правильное определение причин и следствий, которые могут выполнять функции друг друга в зависимости от условий и времени.

К приемам мыслительной деятельности относятся анализ, синтез, сравнение, абстрагирование, обобщение, конкретизация, классификация. Основными являются анализ и синтез. Остальные же - производные от первых двух. Какие из этих логических операций применит человек, будет зависеть от задачи и от характера информации, которую он подвергает мыслительной переработке.

Анализ - это мысленное разложение целого на части или мысленное выделение из целого его сторон, действий, отношений.

Синтез - обратный анализу процесс мысли, это - объединение частей, свойств, действий, отношений в одно целое. Анализ и синтез - две взаимосвязанные логические операции. Синтез, как и анализ, может быть как практическим, так и умственным.

Анализ и синтез сформировались в практической деятельности человека. В трудовой деятельности люди постоянно взаимодействуют с предметами и явлениями. Практическое освоение их и привело к формированию мыслительных операций анализа и синтеза.

Сравнение - это установление сходства и различия предметов и явлений. Сравнение основано на анализе. Прежде чем сравнивать объекты, необходимо выделить один или несколько признаков их, по которым будет произведено сравнение.

Сравнение может быть односторонним, или неполным, и многосторонним, или более полным. Сравнение, как анализ и синтез, может быть разных уровней - поверхностное и более глубокое. В этом случае мысль человека идёт от внешних признаков сходства и различия к внутренним, от видимого к скрытому, от явления к сущности.

Абстрагирование - это процесс мысленного отвлечения от некоторых признаков, сторон конкретного с целью лучшего познания его. Человек мысленно выделяет какой-нибудь признак предмета и рассматривает его изолированно от всех других признаков, временно отвлекаясь от них. Изолированное изучение отдельных признаков объекта при одновременном отвлечении от всех остальных помогает человеку глубже понять сущность вещей и явлений. Благодаря абстракции человек смог оторваться от единичного, конкретного и подняться на самую высокую ступень познания - научного теоретического мышления.

Конкретизация - процесс, обратный абстрагированию и неразрывно связанный с ним. Конкретизация есть возвращение мысли от общего и абстрактного к конкретному с целью раскрытия содержания.

Мыслительная деятельность всегда направлена на получение какого-либо результата. Человек анализирует предметы, сравнивает их, абстрагирует отдельные свойства с тем, чтобы выявить общее в них, чтобы раскрыть закономерности, управляющие их развитием, чтобы овладеть ими.

Обобщение , таким образом, есть выделение в предметах и явлениях общего, которое выражается в виде понятия, закона, правила, формулы и т.п.

Каждый акт мышления представляет собой процесс решения какой-либо задачи, возникающей в ходе познания или практической деятельности. Результатом этого процесса может быть понятие - форма мышления, отражающая существенные свойства, связи и отношения предметов и явлений, выраженная словом или группой слов.

Усвоение понятий и развитие психики учащихся в обучении - классическая проблема педагогической психологии. Подлинное усвоение понятий, т.е. свободное и творческое оперирование ими, достигается управлением умственной деятельностью учащихся.

Существенно, что отечественные и зарубежные педагоги и психологи единодушны в том, что для формирования правильных понятий учащихся надо специально обучать приемам и способам умственной деятельности.

1.2 Виды мышления

Система приемов и способов умственной деятельности помогает учащимся обнаружить, выделить, объединить существенные признаки изучаемых предметов и явлений.

В психологии рассматривают следующие виды мышления (табл.1).

Таблица 1

Организация

мыслительной деятельности

Виды мышления

  • наглядно-образное (конкретно - образное)
  • наглядно - действенное (конкретно-действенное)
  • абстрактное (словесно-логическое)

По характеру решаемых задач

  • теоретическое
  • практическое.

По степени развернутости

  • аналитическое (логическое)
  • интуитивное

По степени новизны и оригинальности

  • репродуктивное (воспроизводящее)
  • продуктивное (творческое)

Самым ранним (присущим детям в возрасте до 3 лет) является наглядно-действенное мышление - вид мышления, опирающийся на непосредственное восприятие предметов, реальное преобразование ситуации в процессе действий с предметами.

Конкретно-действенное мышление направлено на решение конкретных задач в условиях производственной, конструктивной, организаторской и иной практической деятельности людей. Практическое мышление - это, прежде всего техническое, конструктивное мышление. Оно состоит в понимании техники и в умении человека самостоятельно решать технические задачи. Процесс технической деятельности есть процесс взаимодействий умственных и практических компонентов работы. Сложные операции абстрактного мышления переплетаются с практическими действиями человека, неразрывно связаны с ними. Характерными особенностями конкретно-действенного мышления являются ярко выраженная наблюдательность, внимание к деталям, частностям и умение использовать их в конкретной ситуации, оперирование пространственными образами и схемами, умение быстро переходить от размышления к действию и обратно. Именно в этом виде мышления в наибольшей мере проявляется единство мысли и воли.

В 4-7 лет у ребенка развивается наглядно-образное мышление - вид мышления, характеризующийся опорой на представления и образы; функции образного мышления связаны с представлением ситуаций и изменений в них, которые человек хочет получить в результате своей деятельности, преобразующей ситуацию.

Конкретно-образное , или художественное, мышление характеризуется тем, что отвлечённые мысли, обобщения человек воплощает в конкретные образы.

В первые годы обучения в школе происходит развитие абстрактно-логического (понятийного) мышления - вид мышления, осуществляемый при помощи логических операций с понятиями. У школьников среднего и старшего возраста этот вид мышления становится особенно важным.

Абстрактное , или словесно-логическое, мышление направлено в основном на нахождение общих закономерностей в природе и человеческом обществе. Абстрактное, теоретическое мышление отражает общие связи и отношения. Оно оперирует главным образом понятиями, широкими категориями, а образы, представления в нём играют вспомогательную роль.

Оно отражает такие факты, закономерности и причинно-следственные связи, которые не поддаются наглядно-действенному и образному способу познания. На этом этапе школьники учатся формулировать задания в словесной форме, оперировать теоретическими понятиями, создают и усваивают различные алгоритмы решения задач и деятельности и т.п.

Все три вида мышления тесно связаны друг с другом. У многих людей в одинаковой мере развиты конкретно-действенное, конкретно-образное и теоретическое мышление, но в зависимости от характера задач, которые человек решает, на первый план выступает то один, то другой, то третий вид мышления.

1.3 Этапы мыслительной деятельности и признаки ее развития

Не смотря на многообразие конкретных мыслительных задач, любую из них можно рассматривать как процесс поэтапного движения к ее разрешению. (Приложение 1 ).

В конкретных случаях отдельные этапы мыслительного действия могут отсутствовать или перекрывать один другой, но в основном эта структура сохраняется.

Психология установила, что простое сообщение знаний, простая передача приемов и способов умственных действий путем показа образца и тренировки не развивает мышления.

Под развитием мышления учащихся в процессе обучения понимается формирование и совершенствование всех видов, форм и операций мышления, выработку умений и навыков по применению законов мышления в познавательной и учебной деятельности, а также умений осуществлять перенос приемов мыслительной деятельности из одной области знаний в другую.

Таким образом, развитие мышления включает в себя:

  1. Развитие всех видов мышления и одновременно стимуляцию процесса перерастания их из одного вида в другой.
  2. Формирование и совершенствование мыслительных операций.
  3. Развитие умений:
    • выделять существенные свойства предметов и абстрагировать их от несущественных;
    • находить главные связи и отношение предметов и явлений реального мира;
    • делать правильные выводы из фактов и проверять их;
    • доказывать истинность суждений и опровергать ложные умозаключения;
    • раскрывать сущность основных форм правильных умозаключений (индукции, дедукции и по аналогии);
    • излагать свои мысли определенно, последовательно, непротиворечиво и обоснованно.
  4. Выработку умения осуществлять перенос операций и приемов мышления из одной области знания в другую; прогнозирование развития явлений и умения делать выводы.
  5. Совершенствование умений и навыков по применению законов и требований формальной и диалектической логики в учебной и во внеурочной познавательной деятельности учащихся.

Педагогическая практика показывает, что указанные компоненты тесно взаимосвязаны. Особенно велико значение мыслительных операций (анализа, синтеза, сравнения, обобщения и т.д.), лежащих в основе любого из них. Формируя и совершенствуя их у учащихся, мы тем самым способствуем развитию мышления вообще и теоретического мышления в частности.

В качестве критериев развития мышления используются показатели (существенные признаки), свидетельствующие о достижении того или иного уровня развития мышления учащихся.

Критерий 1 - степень осознанности операций и приемов мыслительной деятельности. Под этим следует понимать, что учитель должен не только развивать у учащихся умение мыслить, что опосредованно делается на уроке по любому школьному предмету, но и демонстрировать им в явной форе сам процесс этой специфической деятельности и его результаты.

Критерий 2 - степень овладения операциями, умениями и приемами мыслительной деятельности, умение производить рациональные действия по применению их в учебных и внеучебных познавательных процессах.

Критерий 3 - степень умения осуществлять перенос мыслительных операций и приемов мышления, а также навыков пользований ими на другие ситуации и предметы.

Умение осуществлять перенос - это, по мнению ряда психологов (Л.С. Выготского, С.Л. Рубинштейна, А.Н. Леонтьева, С. Эриксона, В. Браунелли и др.), важный признак развития мышления.

Критерий 4 - степень сформированности различных видов мышления.

Критерий 5 -запас знаний, их системность, а также появление новых способов усвоения знаний.

Критерий 6 - степень умения творчески решать задачи, ориентироваться в новых условиях, действовать оперативно.

Критерий 7 - способность усваивать логические суждения и использовать их в учебной деятельности.

Все критерии неразрывно связаны друг с другом, представляя единое целое.

В настоящее время уделяется особое внимание развитию мышления старшеклассников.

Во-первых, потому, что к этому возрасту у ребенка:

  1. вырабатывается активная жизненная позиция;
  2. отношение к выбору будущей профессии становится более сознательным;
  3. резко возрастает потребность в самоконтроле и самооценке;
  4. самооценка и самосознание становится более выраженными;
  5. мышление делается более абстрактным, глубоким и разносторонним;
  6. возникает потребность в интеллектуальной деятельности.

Во-вторых, в силу своих возрастных особенностей, учащиеся старших классов обладают такими качествами, которые позволяют целенаправленно развивать у них мышление. К ним можно отнести высокий уровень обобщения и абстракции, стремление к установлению причинно-следственных связей и других закономерностей между предметами и явлениями, критичность мышления, способность аргументировать свои суждения.

В-третьих, самосознание старшеклассников переходит на более высокий уровень, что выражается в углублении самоконтроля, самооценки, стремлении к самостоятельности и совершенствованию и в конечном итоге способствует формированию навыков самообразования и самовоспитания.

Глава 2. Развитие логической мышления при изучения раздела «Основы алгоритмизации»

2.1 Формирование понятий

В основе системы знаний учащихся лежит сформированность системы понятий изучаемой предметной области.

Владение понятийным аппаратом в большей степени определяет понимание учебного материала, его использование для решения прикладных задач. Каждое новое вводимое понятие должно быть четко определено, раскрыта суть изучаемого понятия, кроме того, должны быть определены связи данного понятия с другими понятиями, как уже введенными, так еще неизвестными учащимся.

При формировании понятий информатики необходимо учитывать, что они имеют весьма абстрактный характер (например, понятие «информационная модель», «информация»).

«Педагогическая психология на основе изучения процесса формирования у школьников многих понятий дает следующие рекомендации: чем абстрактнее понятие, тем больше конкретных объектов должно быть подвергнуто анализу с целью выявления существенных его черт, тем шире должно «работать» данное понятие при описании и объяснении конкретных объектов. Лишь на основе анализа конкретных объектов и в процессе использования понятие предстает в своем полном объеме, выделяются все его существенные стороны. В противном случае усвоение понятия имеет словесный, книжный характер, его словесное обозначение не вызывает у учащихся никакой ассоциации.

Логические схемы понятий являются именно таким представлением информации человеку, когда смысловое содержание понятия дополняется не только перечислением признаков данного понятия, но и наглядным представлением его взаимосвязи с другими понятиями.

Включенность понятия в совокупность взаимосвязей помогает появлению дополнительных ассоциаций, закреплению понятия в схемах мышления учащихся, переносу знаний о понятии из одной области на знания из другой областей.

Практика применения логических схем понятий на уроках информатики подтверждает положение о том, что чем больше умственных усилий мы прилагаем к тому, чтобы организовать информацию, придать ей целостную, осмысленную структуру, тем легче она потом запоминается.

Очень интересна работа учащихся, когда они «подыскивают место» новому понятию в существующей структуре. В процессе такой деятельности обучаемые должны анализировать структуры своих собственных знаний, что помогает им включать новые знания в структуры уже имеющихся знаний и представлений. Самостоятельное составление учащимися информационно-логических схем по незаполненным (пустым) схемам-паутинкам способствует повышению познавательного интереса учащихся, достижению успехов в обучении. Умение систематизировать знания и представлять их в различных видах имеет также самостоятельную ценность для развития мышления учащихся.

Данная форма организации работы на уроках информатики является хорошим пропедевтическим приемом изучения темы «Основы алгоритмизации».

2.2 Развитие алгоритмического мышления в процессе изучения темы «Циклы»

Развитию логического мышления способствует формирование навыков построения алгоритмов. Поэтому в курс информатики включен раздел «Основы алгоритмизации». Основная цель раздела - формирование у школьников основ алгоритмического мышления.

Под способностью алгоритмически мыслить понимается умение решать задачи различного происхождения, требующие составления плана действий для достижения желаемого результата.

Алгоритмическое мышление, наряду с алгебраическим и геометрическим является необходимой частью научного взгляда на мир.

Каждый человек постоянно выполняет алгоритмы. Обычно нет необходимости думать о том, какие действия и в каком порядке при этом совершаются. Если же алгоритм требуется объяснить человеку, ранее с ним незнакомому (или, скажем, ЭВМ), то алгоритм необходимо представить в виде четкой последовательности простейших действий.

Любой формальный исполнитель (в том числе и ЭВМ) рассчитан на выполнение ограниченного набора действий (операций). При работе с ним учащиеся сталкиваются с необходимостью построения алгоритмов с использованием фиксированного набора операций (системы команд).

Под алгоритмической культурой школьников понимается совокупность специфических представлений, умений и навыков, связанных с понятием алгоритма и средствами его записи.

Таким образом, понятие алгоритма является первым этапом формирования у учащихся представлений об автоматической обработке информации на ЭВМ.

Алгоритмы используются при решении не только вычислительных задач, но и для решения большинства практических задач.

При построении алгоритмов учащиеся учатся анализировать, сравнивать, описывать планы действий, делать выводы; у них вырабатываются навыки излагать свои мысли в строгой логической последовательности.

Подбирая задания при изучении основных алгоритмических конструкций необходимо учитывать следующие аспекты:

  • Какие мыслительные операции будут «работать» при ее решении;
  • Будет ли сама постановка задачи способствовать активизации мышления учащихся;
  • Какие критерии развития мышления можно применить в ходе решения этой задачи.

Чтобы при разборе задачи направить обсуждение в нужное русло, рекомендуется использовать побуждающие вопросы. Эти вопросы носят открытый характер, т.е. не предполагают какого-либо единственного «правильного» ответа. Учащиеся ведут активный и свободный интеллектуальный поиск, сообразно со своими личными мыслительными способностями.

Например, можно использовать следующий блок побуждающих вопросов с последующей фиксацией мыслительных операций, которыми будут пользоваться учащиеся при решении задачи «Дан одномерный массив А, размерность которого равна 10. Определить число элементов в массиве, значение которых кратно 5.»

Вопрос

Мыслительные операции, которыми будут пользоваться учащиеся

  1. Прочитайте задачу. Из скольких этапов, по-вашему, будет состоять ее решение?

(3 этапа - ввод, вывод массива и определение кратности)

1. Анализ задачи (выделение исходных данных, результата), синтез (выделение этапов).

  1. В чем суть математического понятия «кратность»?

(Деление без остатка на заданное число; частное - целое число)

2. Анализ - синтез - конкретизация - обобщение - суждение (ученик должен из множества имеющейся информации выделить нужную - понятие «кратность», вспомнить ее суть, обобщить, сделать вывод).

  1. На основании каких математических законов, правил мы делаем вывод о кратности чисел?

(признаки делимости, таблица умножения).

3. синтез - обобщение - суждение (повторение признаков делимости)

Структурной элементарной единицей алгоритма является простая команда, обозначающая один элементарный шаг переработки или отображения информации. Простая команда на языке схем изображается в виде функционального блока, который имеет один вход и один выход (Приложение 2). Из простых команд и проверки условий образуются составные команды, имеющие более сложную структуру и тоже один вход и один выход. В соответствии с принципом минимальной достаточности методических средств, допускаются всего три базовые конструкции — следование, ветвление (в полной и сокращенной формах), повторение (с постусловием и предусловием). С помощью соединения только этих элементарных конструкций (последовательно или вложением) можно «собрать» алгоритм любой степени сложности.

При разработке алгоритмов необходимо использовать только базовые конструкции и стандартным образом их изображать, что позволит облегчить понимание структуры алгоритма, отвлечься от несущественных деталей и сконцентрировать внимание учащихся на нахождении способа решения задачи.

Использование блок-схемы позволяет высветить сущность выполняемого процесса, дать определение командам ветвления и повторения, которое будет понято учащимися, запомнено и применено в их учебной деятельности.

В ряде учебников первой изучаемой конструкцией после команды следования является цикл, поскольку это дает возможность сократить запись алгоритма. Как правило, это конструкция «повторить n раз ». Такой подход приводит к трудностям в освоении циклов как структуры организации действий, качественно отличающейся от линейной.

Во-первых, другие разновидности цикла с предусловием и с постусловием (цикл «пока», цикл с параметром, цикл «до») воспринимаются как изолированные друг от друга и главный признак — повторяемость действий — не выступает в качестве системообразующего.

Во-вторых, без внимания остаются опорные умения, которые необходимы при разработке циклов: правильное выделение условия продолжения или окончания цикла, правильное выделение тела цикла. Проверка условия в цикле «повторить n раз» практически не видна, и циклический алгоритм часто продолжает восприниматься учащимися как линейный, только иначе оформленный, что порождает неверный стереотип у учащихся в восприятии циклов вообще.

Изучение команды повторения следует начинать с введения цикла с постусловием, поскольку в этом случае учащемуся дается возможность вначале продумать команды, входящие в цикл, и только после этого сформулировать условие (вопрос) повторения этих команд. Если же сразу вводить цикл с предусловием, то учащимся придется выполнять оба эти действия одновременно, что снизит эффективность проведения занятий. В то же время цикл с постусловием рассматривается в качестве подготовки восприятия учащимися цикла с предусловием, обеспечивает перенос знаний на другой вид команды повторения, дает возможность работать по аналогии. Следует обратить внимание учащихся на то, что данные виды цикла отличаются по месту проверки условия, по условию возврата к повторению выполнения тела цикла. Если в команде повторения с постусловием тело цикла выполняется хотя бы один раз, то в команде повторения с предусловием оно может ни разу не выполняться.

Среди определений понятия «команда повторения» в учебной литературе встречается такое: цикл — это команды алгоритма, которые позволяют несколько раз повторить одну и ту же группу команд. В данной формулировке не сказано, почему имеется возможность повторения и сколько раз можно повторять, почему повторяется обязательно группа команд. Опираясь на структурную схему команды повторения (Приложение 2), можно предложить следующее определение.

Повторение - это составная команда алгоритма, в которой в зависимости от соблюдения условия может повторяться выполнение действия.

Заключение

Логическое мышление не является врожденным, значит, на протяжении всех лет обучения в школе необходимо всесторонне развивать мышление учащихся (и умение пользоваться мыслительными операциями), учить их логически мыслить.

Логика необходима там, где имеется потребность систематизировать и классифицировать различные понятия, дать им четкое определение.

Для решения данной проблемы необходима специальная работа по формированию и совершенствованию умственной деятельности учащихся.

Необходимо:

  • развивать умение проведения анализа действенности для построения информационно-логической модели;
  • научить использовать основные алгоритмические конструкции для построения алгоритмов (с целью развития алгоритмического мышления);
  • вырабатывать умение устанавливать логическую (причинно-следственную) связь между отдельными понятиями;
  • совершенствовать интеллектуальные и речевые умения учащихся.

В старших классах для учащихся усиливается важность самого процесса учения, его цели, задачи, содержания и методы. Этот аспект оказывает влияние на отношение ученика не только к учебе, но и к самому себе, к своему мышлению, к своим переживаниям.

Изучение алгоритмического языка — одна из важнейших задач курса информатики. Алгоритмический язык выполняет две основные функции. Во-первых, его применение позволяет стандартизировать, придать единую форму всем рассматриваемым в курсе алгоритмам, что важно для формирования алгоритмической культуры школьников. Во-вторых, изучение алгоритмического языка является пропедевтикой изучения языка программирования. Методическая ценность алгоритмического языка объясняется еще и тем, что в условиях, когда многие школьники не будут располагать ЭВМ, алгоритмический язык является наиболее подходящим языком, ориентированным для исполнения их человеком.

Организация материала в виде схем способствует его лучшему усвоению, воспроизведению потому, что значительно облегчает последующий поиск.

Педагогическая практика показывает, что такое представление учебного материала способствует осмысленному структурированию учащимися воспринимаемой информации и на этой основе - более глубокому пониманию логических закономерностей и связей между основными понятиями изучаемой темы. Структурирование информации должно использоваться как при объяснении учебного материала (краткие конспекты лекций), так и для более эффективной организации практической работы на компьютере (тексты лабораторных работ), для активизации самостоятельной работы учащихся.

  1. Заг А.В. Как определить уровень мышления школьников.
  2. Зорина Л.Я. Дидактические основы формирования систем знаний старшеклассников. М., 1978.
  3. Иванова Л.А. Активизация познавательной деятельности учащихся при изучении физики. М.: Просвещение, 1983.
  4. Левченко И. В., канд. пед. наук. Московский городской педагогический университет // Информатика и образование №5’2003 с.44-49
  5. Леденев В.С., Никандров Н.Д., Лазутова М.Н. Учебные стандарты школ России. М.: Прометей, 1998.
  6. Лыскова В.Ю., Ракитина Е.А. Применение логических схем понятий в курсе информатики.
  7. Павлова Н.Н. Логические задачи. Информатика и образование №1, 1999.
  8. Платонов К.К., Голубев Г.Г. Психология. М.: Просвещение, 1973.
  9. Понамарева Е.А. Основные закономерности развития мышления. Информатика и образование №8, 1999.
  10. Поспелов Н.Н., Поспелов И.Н. Формирование мыслительных операций у школьников. М.: Просвещение, 1989.
  11. Самовольникова Л.Е. Программно-методические материалы: Информатика. 1-11 класс.
  12. Столяренко Л.Д. Основы психологии. 3-е издание. М., 1999.
  13. Отсев ассоциаций;

    появление предположения

    Проверка предположения

    (не подтвердилось?)

    Появление нового

    предположения

    Решение задачи

    Действие

    Современный этап развития среднего образования характеризуется интенсивным поиском нового в теории и практике. Этот процесс обусловлен рядом противоречий, главное из которых – несоответствие традиционных методов и форм обучения и воспитания новым тенденциям развития системы образования, нынешним социально-экономическим условиям развития общества, породивших целый ряд объективных инновационных процессов. Изменился социальный заказ общества по отношению к средней школе: школа должна способствовать формированию личности, способной к творчеству, сознательному, самостоятельному определению своей деятельности, к саморегулированию, которое обеспечивает достижение поставленной цели.
    Главной организационной формой обучения в средней общеобразовательной школе является урок. Но в процессе преподавания информатики можно столкнуться со следующими проблемами, которые решить традиционными методами обучения очень сложно:

    • различие уровня знаний и умений школьников по информатике и информационным технологиям;
    • поиск возможностей реализации потребности интересов учащихся посредством применения многообразия информационных технологий.

    Поэтому урок по информатике должен быть не просто уроком, а «нетрадиционным уроком». (Нетрадиционный урок – это импровизированное учебное занятие, имеющее нетрадиционную, не установленную структуру. И.П. Подласый)
    Например, урок – игра в 5 - ом классе «Путешествие на планету Компик» (раздел «Устройство компьютера»). На уроке ребята собирают пазлы (разрезана картинка с нарисованным компьютером), собирают домино, разгадывают ребусы.

    Урок - игра в 6-ом классе «Исполнитель». Учащиеся в игровой форме работают с исполнителем, задают ему команды, которые он должен выполнить и достичь поставленной цели.

    Урок – исследование в 7- ом (математическом) и в 8-х классах «Графические редакторы». Учащимся предлагается создать рисунки в векторном и растровом редакторах и провести ряд действий, после чего заполнить таблицу своих наблюдений.

    Урок – исследование в 7-ом классе «Сохранение изображения в различных графических форматах с помощью растрового редактора». Учащимся предлагается создать рисунок в растровом редакторе и сохранить его с разным расширением, посмотреть что изменилось, выводы записать на листок.

    Урок – беседа в 5-ом классе «Кодирование информации», «Наглядные формы информации». На данных уроках ведется диалог между учителем и учеником, что позволяет учащимся быть полноценными участниками урока.
    Урок – лекция используется в старших класса 9 – 11. Например, «Компьютерные сети». Начитывается теоретический материал, а после идет применение и закрепление его на практике.
    Урок – зачет в 5-ом «Информация. Формы представления информации», 6-ом – «Кодирование информации», 7-ом классах – «Аппаратное и программное обеспечение». Данные уроки являются уроками - проверки изученного ранее материала.
    Наиболее эффективными средствами к любому уроку информатики являются наглядные средства: презентации к урокам, карточки, плакаты, видеосюжеты.

    Обучаясь в одном классе, по одной программе и по одному учебнику, учащиеся могут усваивать материал по-разному. Это зависит от знаний и умений, с которыми учащийся приходит на урок, от увлеченности, заинтересованности материалом, и от психологических возможностей (усидчивости, внимательности, умения фантазировать и т.д.) детей. Поэтому на уроках приходится применять и дифференцированный подход к обучению и оцениванию учащихся.
    Например, учащимся 9-11 классов дается перечень задач (Visual Basic, Pascal, Excel) и каждый из учащихся выполняют задания в том темпе, который им близок, при этом он не задерживает других учащихся класса, или, например, учащимся 5-6 классов дается разноуровневое задание

    Отследить уровень знаний учащихся помогают следующие методы: наблюдение за работой на уроке, устный контроль, письменная проверка теоретического материала, практическая работа, дидактические тесты.
    Хотелось бы остановиться на некоторых методах, позволяющих стимулировать учащихся к овладению новыми знаниями, к самообразованию.
    Практикум – это общее задание для всех учащихся класса, выполняемое на компьютере. Подготовка к практикуму и выполнение происходит на одном уроке. В конце урока выставляется оценка. Цель таких работ проверить практические умения, навыки учеников, способность применять знания при решении конкретных задач. Задания для практической работы учащиеся получают по мере изучения материала. Систематическая работа на компьютере на уроках информатики является важным фактором развития у детей навыков самоконтроля, т.к. при отладке программ и других заданий компьютер автоматически фиксирует все ошибки учащегося.
    Например, необходимо средствами ЭТ Excel построить график функции y=ax2+bx+c. Из курса математики учащиеся знают, что графиком функции является парабола, поэтому в ходе написания программы в Excel, мы также должны получить параболу, в противном случае в программе – ошибка.
    Индивидуальные практические работы - мини-проекты.
    Содержание и объем курса «Информатика и ИКТ» базируется на формировании информационных знаний и направлено на развитие инициативы, творчества, умения применять исследовательский подход в решении различного рода задач всеми учащимися. И здесь на первый план выдвигается проектное обучение с исследовательскими методами обучения.
    Основа проектной (исследовательской) деятельности учащихся закладывается уже в средней школе. В среднем звене приобщение к проектной деятельности осуществляется через выполнение творческих работ с использованием компьютерных технологий (Word, Excel, Power Point), а так же подготовку докладов и рефератов по изучаемым темам.
    Практическая значимость проектной деятельности состоит еще и в формировании умения представлять свою работу на конференциях школьного, городского и т.д. уровней. Поэтому необходимым этапом выполнения проекта является его защита, коллективное обсуждение. Ребята развивают свои коммуникативные навыки. Им интересно посмотреть работы других ребят.
    Например, проекты учащихся 5-го класса «Создание мультфильмов», используя возможности программ Power Point и графического редактора Paint.
    Проект учащихся 8В класса, которые, используя программу Power Point, создали игру, напоминающую теле-игру «Кто хочет стать миллионером?»

    В настоящее время на уроках информатики большую значимость имеют и технологии проблемного обучения.
    Проблемная ситуация является одним из видов мотивации образовательного процесса. Она активизирует познавательную деятельность учащихся и заключается в поиске и решении вопросов, требующих актуализации знаний, анализа, логического мышления. Проблемная ситуация может создаваться на всех этапах обучения: при объяснении, закреплении, контроле.
    Одним из методологических приёмов создания проблемной ситуации является постановка учителем конкретных вопросов, побуждающих учащихся делать сравнения, обобщения, выводы из ситуации, сопоставлять факты.
    Например, реализации этого приёма на уроке-практикуме решения задач с использованием баз данных в программе Access (9 класс).
    В начале урока представляется следующая ситуация: «Вы приехали в чужой город. В гостиницу устроиться не можете. Но в этом городе живёт ваш знакомый. Вы знаете его фамилию, имя, отчество и год рождения. Чтобы узнать адрес, вы обращаетесь в справочное бюро, в котором есть справочник, содержащий информацию обо всех жителях города».
    Вопрос: Как вы думаете, какие данные входят в этот справочник?
    Ответ: Фамилия, инициалы человека, год рождения, адрес.
    Обращается внимание учащихся на то, что если в городе несколько жителей носят одинаковые инициалы и рождены в одном году, то компьютер сообщит адреса всех.
    Вопрос: Каково будет условие задачи?
    Учащиеся с помощью учителя составляют задачу и записывают её условие: «Справочник данных о жителях города имеет вид: фамилия, инициалы, год рождения, адрес. Составить базу данных, построить запрос, который находит адрес нужного человека, если известно его фамилия, инициалы и год рождения».
    Наиболее часто используется проблемное обучение и на уроках по программированию (8-11 классы). Учащимся предлагается написать программу для решения математической, экономической и т.д. задачи, но для этого им необходимо вспомнить формулы, операторы языка, последовательно расположить их, написать программу на компьютере, протестировать ее на примере частных решений. А учитель весь этот процесс сопровождает, задавая наводящие вопросы и направляя учащихся в правильном направлении.
    Не только уроки позволяют повышать качество обучения информатики, но и внеклассные занятия, элективные курсы. Например, элективные курсы «Компьютерный дизайн» (создание сайтов на HTML) – 11 класс, «Работа в текстовом редакторе Word» - 6 класс, «Создание презентаций. Power Point» - 5-7 классы.
    Каждый учащийся, посещающий внеклассное занятие, готовит проект (исследовательскую работу) по выбранной им теме. Вот, например, некоторые из тем: (см.иллюстрации).

    Тематика творческих задач охватывает не только предметную область «Информатика и ИКТ». Наиболее удачные работы учащиеся представляют на гимназическом, городском и т.п. конкурсах, конференциях. Например, некоторые из них:

    • мультимедиа проект «Морское дно» (5 класс, лауреат городского фестиваля рисунков и презентаций);
    • комбинированная работа математика и информатики «Рисунки на координатной плоскости» (6 класс, III место – гимназия НПК, II место – город НПК);
    • комбинированная работа математика и информатики «Использование Visual Basic при решении неопределенных уравнений» (9 класс, I место – гимназия НПК, I место – университет «Дубна» НПК);
    • проект-программа «Если под рукой нет VB» (9 класс, I место- гимназия НПК, I место- город НПК, III место - Международная конференция г.Серпухов, III место - «Шаг в будущее» г.Москва);
    • создание Web-сайта «Анатомия человека» (11 класс, II место - гимназия НПК, II место – город НПК),

    Повысить качества уроков информатики можно и через межпредметные связи. Например, с уроками

    • математики: решение задач на метод координат – 5, 6 классы, построение графиков и диаграмм в ЭТ Excel - 9 класс; решение математических задач в среде программирования Pascal,Visual Basic – 9, 10 классы;
    • экономики (решение простых экономических задач с использованием Excel и среды программирование Visual Basic) – 9-10 классы;
    • трудов для мальчиков: построение плана помещения в графическом редакторе Paint – 5 класс, построение чертежей в векторном редакторе Компас – 7 класс;
    • географии: создание презентаций 7 класс

    Эта взаимосвязь дает возможность учащимся наглядно увидеть значимость уроков информатики, и сферы применения в жизни, изучаемых программ.

    Приходя на урок информатики, ребенок мечтает научиться в первую очередь работать на компьютере. Учеными доказано, что большинство учащихся не могут успешно освоить разделы программирования и далеко не все станут программистами, а вот опытными пользователями в современном мире должен стать каждый для будущей профессиональной деятельности и задача учителя помочь ему в этом.
    На сегодняшний день существует большое количество программных сред, позволяющих найти новые средства самовыражения, реализации и общения учащихся.

    Литература:

    1. Селевко Г.К.. Педагогические технологии на основе информационно-коммуникационных средств.-М.:НИИ школьных технологий, 2005.
    2. Селевко Г.К. Современные образовательные технологии. М.: Просвещение, 2006.
    3. Педагогика. Новый курс: Учебник для студ. пед. вузов в 2кн. / Под ред. И.П. Подласый. - Гуманит.Изд. Центр ВЛАДОС, 2000.

    Использование интерактивных методов на уроках информатики

    в условиях ФГОС

    Интерактивное обучение – это специальная форма организации образовательного процесса, суть которой состоит в совместной деятельности учащихся над освоением учебного материала, в обмене знаниями, идеями, способами деятельности. Интерактивная деятельность на уроках предполагает организацию и развитие диалогового общения, которое ведет к взаимопониманию, взаимодействию, к совместному решению общих, но значимых для каждого участника задач.

    Основные цели интерактивного обучения:

    • стимулирование учебно-познавательной мотивации;
    • развитие самостоятельности и активности;
    • воспитание аналитического и критического мышления;
    • формирование коммуникативных навыков
    • саморазвитие учащихся.

    Современный урок в рамках ФГОС это урок на котором необходимо использовать современные технологии, различные методы и формы работы.

    Одной из технологий способной решить задачи, поставленные в новых стандартах, является технология развития критического мышления ,

    Технология критического мышления позволяет: объединить

    • организовать самостоятельную работу на уроке;
    • вовлечь каждого ученика в учебный процесс;
    • развивать у учащихся положительное отношение к интеллектуальной творческой деятельности;
    • повышать уровень самоорганизации учащихся;
    • овладевать рациональными приемами самообразования;
    • стимулировать мыслительную деятельность и развивать познавательную активность;
    • развивать ключевые компетентности лично значимые для учащихся умения и навыки.

    Технология развития критического мышления представляет собой целостную систему, формирующую навыки работы с информацией через чтение и письмо. Она представляет собой совокупность разнообразных приёмов, направленных на мотивирование ученика, подсознательное побуждение его на исследовательскую, творческую активность, предоставление ему условий для осмысления материала и помощи в обобщении приобретённых знаний.

    Основные этапы урока при использовании технологии «Критическое мышление»:

    Стадия вызова.

    Стадия осмысления.

    Стадия рефлексии.

    Технологичекие

    этапы

    Деятельность

    учителя

    Деятельность

    учащихся

    Возможные

    приемы и методы

    I стадия (фаза)

    Вызов (evocation):

    Актуализация имеющихся знаний;

    Пробуждение интереса к получению новой информации;

    Постановка учеником собственных целей обучения.

    Направлена на вызов у учащихся уже имеющихся знаний по изучаемому вопросу, активизацию их деятельности, мотивацию к дальнейшей работе

    Ученик «вспоминает», что ему известно по изучаемому вопросу (делает предположения), систематизирует информацию до изучения нового материала, задает вопросы, на которые хочет получить ответы.

    Составление списка «известной информации»:

    рассказ-предположение по ключевым словам;

    систематизация материала (графическая): кластеры, таблицы;

    верные и неверные утверждения;

    перепутанные логические цепочки;

    мозговая атака;

    проблемные вопросы, «толстые» и «тонкие» вопросы и т.д.

    Информация, полученная на стадии вызова, выслушивается, записывается, обсуждается. Работа ведется индивидуально, в парах или группах.

    II стадия

    Осмысление содержания (realization of meaning):

    Получение новой информации;

    Корректировка учеником поставленных целей обучения.

    Направлена на сохранение интереса к теме при непосредственной работе с новой информацией, постепенное продвижение от знания «старого» к «новому»

    Ученик читает (слушает) текст, используя предложенные учителем активные методы чтения, делает пометки на полях или ведет записи по мере осмысления новой информации

    Методы активного чтения:

    «инсерт»;

    «фишбоун»;

    «идеал»;

    ведение различных записей типа двойных дневников, бортовых журналов;

    поиск ответов на поставленные в первой части урока вопросы

    На стадии осмысления содержания осуществляется непосредственный контакт с новой информацией (текст, фильм, лекции, материал параграфа). Работа ведется индивидуально или в парах. В групповой работе должны присутствовать два элемента – индивидуальный поиск и обмен идеями, причем личный поиск непременно предшествует обмену мнениями.

    III. Рефлексия (reflection):

    Размышление, рождение нового знания;

    Постановка учеником новых целей обучения.

    Учителю следует: вернуть учащихся к первоначальным записям-предположениям; внести изменения; дать творческие, исследовательские или практические задания на основе изученной информации

    Учащиеся соотносят «новую» информацию со «старой», используя знания, полученные на стадии осмысления содержание.

    Заполнение кластеров, таблиц.

    Установление причинно-следственных связей между блоками информации.

    Возврат к ключевым словам, верным и неверным утверждениям.

    Ответы на поставленные вопросы.

    Организация устных и письменных круглых столов.

    Организация различных видов дискуссий.

    Написание творческих работ.

    Исследования по отдельным вопросам темы и т.д.

    На стадии рефлексии осуществляется анализ, творческая переработка, интерпретация изученной информации. Работа ведется индивидуально, в парах или в группах.

    Применение технологии развития критического мышления на уроках информатики

    Многие уроки изучения нового материала начинаются с приема «Корзина», на доске демонстрируются или выводятся через проектор основные идеи предстоящего урока.

    Например, на уроке изучения «Линейного алгоритма» можно предложить учащимся высказать, как они думают какой алгоритм можно назвать линейным, привести примеры. На уроке изучения «Цикла» предложить предположить, что такое цикл, какие примеры циклических действий они могут привести.

    Рисунок 1. Пример использования приёма «Корзина»

    Класс: 7

    Информация и её свойства.


    Используется механизм ЗУХ (знаю, узнал, хочу узнать или есть вопрос). Индивидуальная работа.

    Таблица 1.

    Пример использования приёма ЗУХ

    Знаю

    Узнал новое

    Хочу узнать подробнее. Есть вопрос?

    Информация – это некоторое сообщение, которое люди передают друг другу. Она содержится в книгах, в окружающихся нас звуках, показаниях приборов и т. д.

    Информация как сигнал. Сигналы бывают дискретными и непрерывными. Виды информации: визуальная, вкусовая, тактильная, обонятельная. Основную информацию человек получает визуально 80–90 %. Информация имеет свои свойства: объективность, достоверность, полнота, актуальность, понятность.

    Каким образом получают информацию слепые? Как проверить информацию на достоверность? Все ли свойства должны выполняться для любого вида информации?


    В каждую из колонок необходимо разнести полученную в ходе урока информацию. Прием «Маркировочная таблица» позволяет учителю информатики проконтролировать работу каждого ученика на уроке, его понимание и интерес к изучаемой теме. Обращаться к этой таблице можно несколько раз за урок. На этапе Вызова заполняется первая колонка, на этапе Реализации – вторая колонка и на этапе Рефлексии – третья. Вот, например, какие маркировочные таблицы были составлены ребятами на некоторых уроках.

    Класс: 9

    Тема: Алгоритмы и исполнители.


    Прием «Кластер». Работа в группах.


    На поисково- исследовательском этапе класс делится на группы (по 5 человек).


    Задание: составить кластер на основе изучения материала учебника. Также наряду с составление кластера обучающиеся составляют список вопросов. Затем группы выступают со своими работами, обсуждают появившиеся вопросы (вся деятельность осуществляется между обучающимися, учитель выполняет функцию координатора; на возникшие вопросы могут отвечать члены других групп, при затруднении обращаясь к учителю).

    Кластер - это графическая организация материала, показывающая смысловые поля того или иного понятия. Составление кластера позволяет учащимся свободно и открыто думать по поводу какой-либо темы. Ученик записывает в центре листа ключевое понятие, а от него рисует стрелки-лучи в разные стороны, которые соединяют это слово с другими, от которых в свою очередь лучи расходятся далее и далее.

    Прием кластера удобно использовать как промежуточную оценку работ учащихся, их понимание рассмотренных понятий. Так, например, прежде чем перейти к знакомству с исполнителем Робот можно попросить ребят изобразить связь со всеми изученными понятиями, отталкиваясь от ключевого слово Алгоритм (при этом к этому кластеру можно обращаться на протяжении всего курса, дополняя его новыми составляющими).

    Рисунок 2. Пример использования приёма «Кластер»

    Класс: 9

    Тема: Информационные технологии и общество.


    Прием «Зигзаг». Работа в группах.


    На поисково-исследовательском этапе класс делится на группы (по 4 человека).


    1этап. Внутри группы распределяют номера от 1 до 4.


    2 этап. Обучающиеся рассаживаются за столы в соответствии с выбранным номером, в группе изучают материал учебника, составляют опорные схемы:

    Рисунок 3. Схема размещения групп обучающихся


    1 стол . Предыстория информатики;


    2 стол . История чисел и систем счисления;


    3 стол . История ЭВМ;


    4 стол . История программного обеспечения и ИКТ.


    3 этап. Возвращаются в домашние группы, по очереди рассказывают новый материал – взаимообучение.


    Класс: 9

    Тема: Способы поиска в Интернете.


    Прием «Исследовательский проект». Индивидуальная работа.


    На этапе рефлексии учитель предлагает обучающимся записать в тетради вопрос или тему, о которой им хотелось бы узнать подробнее. Домашнее задание: выполнить поиск ответа на свой вопрос при помощи Интернета. Проанализировать эффективность поисковых систем (не менее трёх), какая из них для них лично более предпочтительна, свой ответ обосновать по пунктам:


    1. Какими поисковыми системами ты пользуешься чаще всего? Почему ты отдаешь предпочтение именно им?


    2. Напиши преимущества и недостатки выбранных поисковых систем.


    3. Какая из выбранных поисковых систем выдала наиболее оптимальный для тебя ответ на твой вопрос? Сделай выводы по проделанной работе.

    «Мозговой штурм»

    При работе обращайте внимание на иерархию вопросов, которые сопровождают каждый этап «Мозгового штурма»:

    I уровень - что ты знаешь? II уровень - как ты это понимаешь? (применение других знаний, анализ) III уровень - применение, анализ, синтез

    Кроме широко известных примеров использования приемов «Мозгового штурма», когда учащимся предлагается последовательно ответить на вопросы разных уровней

    Например:

    I уровень - Приведите примеры исполнителей; II уровень – Какие алгоритмы, выполняют ваши исполнители? Чем они похожи и в чем у них отличие?

    III уровень – А нужны ли нам исполнители?

    Или:

    I уровень – С какими циклическими алгоритмами вы сталкиваетесь каждый день? II уровень – Всегда ли количество повторений в ваших циклах известно заранее? III уровень – А что бы стало, если бы циклы пропали из нашей жизни?

    на уроках информатики удобно данным методом решать следующий тип задач:

    Прием «Корзина» идей, понятий, имен...

    Это прием организации индивидуальной и групповой работы учащихся на начальной стадии урока, когда идет актуализация имеющегося у них опыта и знаний. Он позволяет выяснить все, что знают или думают ученики по обсуждаемой теме урока. На доске можно нарисовать значок корзины, в которой условно будет собрано все то, что все ученики вместе знают об изучаемой теме.

    Многие уроки изучения нового материала начинаются с приема «Корзина», на доске демонстрируются или выводятся через проектор основные идеи предстоящего урока. Например, на уроке изучения «Линейного алгоритма» можно предложить учащимся высказать, как они думают какой алгоритм можно назвать линейным, привести примеры. На уроке изучения «Цикла» предложить предположить, что такое цикл, какие примеры циклических действий они могут привести.

    Перевёрнутые логические цепи (связать последовательность элементов информации в нужной последовательности)

    Приведу несколько примеров использования данного приема на уроках.

    Разбивка на кластеры (построение логографа-выделение блоков идей)

    Кластер - это графическая организация материала, показывающая смысловые поля того или иного понятия. Слово кластер в переводе означает пучок, созвездие. Составление кластера позволяет учащимся свободно и открыто думать по поводу какой-либо темы. Ученик записывает в центре листа ключевое понятие, а от него рисует стрелки-лучи в разные стороны, которые соединяют это слово с другими, от которых в свою очередь лучи расходятся далее и далее.

    Прием кластера удобно использовать как промежуточную оценку работ учащихся, их понимание рассмотренных понятий. Так, например, прежде чем перейти к знакомству с исполнителем Робот можно попросить ребят изобразить связь со всеми изученными понятиями, отталкиваясь от ключевого слово Алгоритм (при этом к этому кластеру можно обращаться на протяжении всего курса, дополняя его новыми составляющими). Приведу несколько примеров созданных ребятами кластеров при изучении данного курса.

    Прием «Пометки на полях» (инсерт) («v» - я так и думал, «+» - новая информация, «+!» - очень ценная информация, «-» - у меня по-другому, «?» - не очень понятно, я удивлён)

    Данный прием требует от ученика не привычного пассивного чтения, а активного и внимательного. Он обязывает не просто читать, а вчитываться в текст, отслеживать собственное понимание в процессе чтения текста или восприятия любой иной информации. На практике ученики просто пропускают то, что не поняли. И в данном случае маркировочный знак «вопрос» обязывает их быть внимательным и отмечать непонятное. Использование маркировочных знаков позволяет соотносить новую информацию с имеющимися представлениями.

    Очень удобный прием, когда на уроке необходимо охватить большой объем материала, особенно когда он носит теоретический характер. Так как учащиеся работают с рабочими тетрадями это достаточно легко сделать, особенно удачно этот прием будет работать на уроках по изучению таких тем как Вспомогательный алгоритм, Условия в языке Робота, Переменные, Ввод, Вывод данных.

    Прием «Кубик»

    В информатике многие задачи имеют несколько способов решения, при этом выбор оптимального из возможных решений зависит от критериев, которые мы предъявляем к решению задачи.

    Итак, представим, что кубик это некое условие задачи, а его грани это возможные способы ее решения. Данный прием можно реализовывать как индивидуально, так и в группах.

    Примеры таких задач вы может увидеть ниже:

    Синквейн-способ творческой рефлексии - «стихотворение», написанное по определенным правилам

    Знакомство с синквейном проводится по следующей процедуре:

    1. Объясняются правила написания синквейна.

    2. В качестве примера приводятся несколько синквейнов.

    3. Задается тема синквейна.

    4. Фиксируется время на данный вид работы.

    5. Заслушиваются варианты синквейнов по желанию учеников.

    Учитель

    Душевный, открытый

    Любящий, ищущий, думающий

    Много идей - мало времени

    Призвание

    Или:

    Учитель

    Суетливый, крикливый

    Объясняет, объясняет, ждет

    Когда окончится эта пытка?

    Бедолага


    Синквейны полезны ученику в качестве инструмента для синтезирования сложной информации. Учителю - в качестве среза оценки понятийного и словарного багажа учащихся. Синквейн - резюмирует информацию, излагает сложные идеи, чувства и представления в нескольких словах.

    Использовать синквейны можно при изучении любого предмета.

    Использование синквейнов возможно фактически на каждом уроке, как в его начале, как начальная рефлексия, так и в качестве завершения урока.

    Приведу несколько примеров синквейнов, написанных учащимися во время изучения курса информатики в 6-ом классе.

    Цикл

    Сложный, разный

    Повторяется, работает, зацикливается

    Без цикла нельзя начистить картошку

    Важно

    Или:

    Развилка

    Полная, сокращенная

    Предлагает, выбирает, решает

    Нужно выбрать правильный путь

    Проблема

    Прием «Написание эссе»

    Смысл этого приема можно выразить следующими словами: «Я пишу для того, чтобы понять, что я думаю». Это свободное письмо на заданную тему, в котором ценится самостоятельность, проявление индивидуальности, дискуссионность, оригинальность решения проблемы, аргументации. Обычно эссе пишется прямо в классе после обсуждения проблемы и по времени занимает не более 5 минут. На уроках в рамках данной программы этот прием удобно использовать в плане итоговой рефлексии, когда была рассмотрена важная учебная тема или решена серьезная проблема, как вариант когда на устную рефлексию в конце урока не хватает рабочего времени .

    Приемов развития критического мышления великое множество, их применение на уроках также не ограничено. Уроки с применением подобных методик делают занятия более занимательными и продуктивными, а также дают учителю широкую картину уровня осознания и понимания изучаемого материала обучающимися.

    Цифровые образовательные ресурсы дополняют традиционную технологию обучения какого-либо школьного предмета или отдельных его разделов и тем. Содержат в себе четко структурированную учебную информацию в текстовом виде, множество наглядных изображений в виде схем, рисунков, таблиц, видеофрагментов, снабженных анимационными и звуковыми эффектами.

    На сегодняшний день внедрение ИКТ осуществляется по следующим направлениям:

    • 1. построение урока с применением программных мультимедиа средств:
      обучающих программ и презентаций, электронных учебников, видеороликов.
    • 2. осуществление автоматического контроля: использование готовых тестов, создание собственных тестов, применяя тестовые оболочки.
    • 3. организация и проведение лабораторных практикумов с виртуальными
      моделями.
    • 4. обработка результатов эксперимента.
    • 5.разработка методических программных средств.
    • 6. использование ресурсов интернет.
      7. коммуникационные технологии: дистанционные олимпиады, дистанционное обучение, сетевое методическое объединение.
    • Методические материалы, тематические коллекции, программные средства для поддержки учебной деятельности и организации учебного процесса.

      LearningApps.org является приложением Web 2.0 для поддержки обучения и процесса преподавания с помощью интерактивных модулей. Существующие модули могут быть непосредственно включены в содержание обучения, а также их можно изменять или создавать в оперативном режиме. Целью является также собрание интерактивных блоков и возможность сделать их общедоступным. Такие блоки (так называемые приложения или упражнения) не включены по этой причине ни в какие программы или конкретные сценарии. Они имеют свою ценность, а именно Интерактивность.

      сайт http://standart.edu.ru )

      Использование ЦОР на уроках возможно в различных формах:

      Интерактив (взаимодействие) – поочередные высказывания (от выдачи информации до произведенного действия) каждой из сторон. Причем каждое высказывание производится с учетом как предыдущих собственных, так и высказываний другой стороны;

      Мультимедиа - представление ресурсов и процессов не традиционном текстовым описанием, а с помощью фото, видео, графики, анимации, звука;

      Моделинг - моделирование реальных ресурсов и процессов с целью их исследования;

      Коммуникативность - возможность непосредственного общения, оперативность предоставления информации, контроль за состоянием процесса;

      Производительность - автоматизация нетворческих, рутинных операций, отнимающих у человека много сил и времени. Быстрый поиск информации по ключевым словам в базе данных, доступ к уникальным изданиям справочно-информационного характера.




Loading...Loading...