Тритерпеновые сапонины. Сапонин -гликозиды. Описание и характеристика

Растительные гликозиды, обладающие способностью образовывать с водой мыльную пену, получили название сапонинов. При гидролизе они образуют агликоны типа спиростанола-β, дигитогенина. При попадании в кровь высокотоксичны – вызывают гемолиз эритроцитов при разведении 1:50 000. Получают стероидные сапонины из наперстянки, диоскореи, аралии, сои и других растений путем экстракции их водой или водными растворами этанола. Индивидуальные соединения выделяют с помощью адсорбционно-хроматографических методов или методом противоточного распределения.

Применяют для синтеза стероидных гормонов, для получения антиатеросклеротических и венотонизирующих препаратов. Многие настойки содержат сапонины, обладающие мочегонным и отхаркивающим действием.

Технология производства стероидных сапонинов

Первые новогаленовые препараты, содержащие стероидные сапонины, стали вырабатываться из диоскореи.

Диоспонин (Diosponinum). Сухой очищенный экстракт из корней и корневищ диоскореи кавказской, содержит сумму водорастворимых стероидных сапонинов.

Сырье экстрагируют 8% этиловым спиртом в батарее по принципу противоточной мацерации.

Извлечение упаривают под вакуумом до 1/10 объема вытяжки.

К кубовому остатку добавляют алюмокалиевые квасцы для осаждения смолистых веществ.

После фильтрации вытяжку направляют вадсорбционную колонку с окисью алюминия. Реадсорбцию проводят обессоленной водой.

Вытяжку дополнительно очищают жидкостной экстракцией хлороформом .

После этого следует экстракция суммы сапонинов селективным экстрагентом – хлороформно-спиртовой смесью.

После удаления под вакуумом экстрагента получают препарат в виде порошка.

Применяется как гипохолестеринемическое средство при атеросклерозе.

Выпускается в таблетках по 0,1 г.

Препараты на основе сапонинов

Полиспонин – сухой экстракт из диоскореи ниппонской с содержанием суммы сапонинов не менее 17% . Форма выпуска – таблетки по 0,1 г. Назначение то же, что и диоспонина.

Трибуспонин – таблетки по 0,1г, содержащие сумму стероидных сапонинов из травы якорцев стелющихся. Показания к применению те же, что и для диоспонина и полиспонина.

Слизистые водорастворимые полисахариды

К этой группе полисахаридов относятся углеводы, образующие густые слизистые растворы. В состав слизей входят пентозаны и гексозаны. От крахмала они отличаются отсутствием характерных зерен и реакции с раствором йода, от пектиновых веществ – отсутствием полигалактуроновых кислот и желирующей способностью, от камедей – осаждаемостью нейтральным раствором свинца ацетата.

В химическом отношении слизи трудно отличить от камедей. Основным отличием является значительное преобладание пентозанов (их количество может доходить до 90%) над гексозанами.

Водорастворимые полисахариды водорослей представлены в основном в виде солей альгиновой кислоты.

Из физических свойств для слизей характерна полная растворимость в воде, в то время как для ряда камедей свойственно только набухание.

По характеру образования слизей сырье различают следующим образом:

    сырье с интерцеллюлярной слизью (льняное семя, блошное семя и др.);

    сырье с внутриклеточной слизью (клубни ятрышника, корень и листья алтея, листья подорожника, листья мать-и-мачехи и др.);

Выделяют слизистые водорастворимые полисахариды методами дробной мацерации в сочетании с кипячением и противоточной экстракцией в батарее перколяторов, очистку проводят, как правило, этанолом с последующей фильтрацией и сушкой.

Сапонинами (от лат. Sapo - мыло) называют гликозиды растительного и животного происхождения, большая часть которых обнаруживает поверхностную, гемолитическую активностью и токсичность по отношению к холоднокровным животным.

Молекулы сапонинов, как и других гликозидов, состоят из сахарной части и агликона, который называют сапогенином. По типу агликона тритерпеновые сапонины разделяют на группы дамарана, циклоартана, лупан,а фриделана, урсана, олеанана и др. Гликозиды содержат один или два углеводные цепи линейной или разветвленной структуры.

Чаще всего углеводная цепь находится в положении С-3, но встречаются вещества, содержащие углеводный остаток по карбоксильной группе агликона.

В углеводной цепи может находиться от 1 до 11 моносахаридов D-глюкоза, D-галактоза, D-ксилоза, L-арабиноза, L-рибоза, D-фукозы, L-рамноза и Д-глюкуроновая кислота. В состав некоторых гликозидов входят остатки органических кислот, например ангеликовая, тиглиновая, коричная, уксусная и др.

Распространение и биологические функции в растениях

Сапонины обнаружены в 900 видах растений, относящихся к 90 семействам. Тетрацикличные тритерпеновые сапонины содержит ограниченная группа семейств - Araliaceae, Cucurbitaceae и некоторые др. Пентациклическая группа широко распространена в природе в растениях 40 семейств, в частности Fabaceae, Caryophyllaceae, Asteraceae, Araliaceae, Polygalaceae, Lamiaceae и тому подобное. Из высших споровых растений тритерпеновые сапонины содержат некоторые виды папоротников. Очень редко сапонины всречаются в организме животных.

Наличие сапонинов обнаружено во всех частях растений, но накапливаются они преимущественно в корнях, корневищах, клубнях, плодах, значительно меньше в коре и наземной части.

В растениях сапонины находятся в свободном состоянии или в сочетании с другими веществами. Чаще всего их бывает несколько, причем один или два доминируют по количественному содержанию. При изучении сапонинов в растениях были обнаружены некоторые особенности в их накоплении.

Несмотря на широкое распространение тритерпеновых сапонинов в природе и древнее использования человеком, изучены они недостаточно вследствие сложности химической и стереохимической строения. Их исследовало много зарубежных и отечественных ученых (Л. Ружичка с соавторами, С. Черникова, А. Хорлин, Ю. Оводом, Г. Еляков и др.).

Существует три точки зрения на роль сапонинов в жизни растений: сапонины -промежточное звено между низкомолекулярными и полимерными веществами, содержащими углерод; они - резервные вещества (содержат много сахаров); защищают растение (их поедают насекомые).

Тритерпеновые сапонины влияют на проницаемость растительных клеток, что связано с их поверхностной активностью. Незначительные концентрации сапонинов ускоряют, а концентрированные - замедляют прорастание семян, рост и развитие растений.

Тема лекции

Лекция №3

1. Понятие о сапонинах.

2. Строение сапонинов, их классификация.

3. Биосинтез сапонинов.

4. Распространение сапонинов в растительном мире, локализация в растениях. Влияние условий обитания и онтогенеза на накопление сапонинов.

5. Сырьевая база растений, содержащих сапонины.

6. Физические, химические и биологические свойства сапонинов.

7. Оценка качества сырья, содержащего сапонины. Методы анализа.

8. Особенности сбора, сушки и хранения сырья, содержащего сапонины.

9. Пути использования сырья, содержащего сапонины.

10. Медицинское применение сырья и препаратов, содержащих сапонины.

Понятие о сапонинах

Сапонины - гетерозиды растительного происхождения, производные стероидов и тритерпеноидов, обладающие гемолитической и поверхностной активностью, а таю/се токсичностью к холоднокровным животным.

Название происходит от латинского слова sapo - мыло, т.к. водные извлечения этих соединений обладают способностью пениться, т.е. понижать поверхностное натяжение жидкостей.

Впервые сапонины были выделены в чистом виде из растений рода Saponaria sp. (мыльнянка).

Как и другие гетерозиды, сапонины способны подвергаться ферментативному гидролизу с образованием углеводной части и агликона. Агликоны сапонинов получили название «сапогенины».

Строение сапонинов, их классификация

В основе классификации сапонинов лежит структура агликона. В зависимости от строения сапогенина все сапонины делят на группы:

1. Стероидные сапонины - производные циклопентанпергидрофенан-трена. По своему строению близки к сердечным гликозидам и часто их сопровождают в растениях (Digitalis sp., Convallaria majalis, Adonis vernalis).

Все стероидные сапогенины в своей структуре имеют:

В 3 положении - гидроксильную (-ОН) группу;

В 10 и 13 положениях - метальные (-СН3) группы;

В положении 5-6 - двойную (-СН=СН-) связь;

В положении 16-17 - спирокетальную группировку.

В зависимости от ориентации спирокетального кольца стероидные сапонины делят на соединения «нормального» ряда и «изо»-ряда.

Углеводная часть молекулы стероидных сапонинов присоединяется в положении 3 агликона и может содержать 1-9 моносахаридов (глюкоза, галактоза, рамноза, галактуроновая кислота и др.). Моносахариды могут образовывать как линейные, так и разветвленные цепи. Например, стероидный сапонин диосцин (Dioscorea nipponica - диоскорея ниппонская, Tribulus terrestris - якорцы стелющиеся) состоит из агликона диосгенина, к которому присоединяется разветвленная триоза:

2. Тритерпеновые сапонины - имеют общую формулу (C5H8)6 и, в зависимости от количества колец в структуре агликона, делятся на 2 группы:



а) тетрациклические - содержат в структуре агликона 4 кольца. В основе этой группы лежит даммаран. Производные даммарана легко окисляются с образованием гетероциклов (панаксдиол и панакстриол). Соединения подобного строения обнаружены в женьшене (Panax ginseng), заманихе высокой (Echynopanax elatum), березе (Betula sp).

б) пентациклические - содержат в структуре агликона 5 колец. Среди этой группы выделяют несколько подгрупп. С медицинской точки зрения, наиболее важными являются производные α-амирина и β-амирина, которые отличаются друг от друга расположением заместителей - метальных (-СНз) фупп в положениях 19 и 20 кольца Б.

α-амирин лежит в основе различных соединений, которые найдены в ортосифоне тычиночном или почечном чае (Ortosyphon stamineus), лапчатке прямостоячей (Potentilla erecta) и других. Наиболее важным представителем является урсоловая кислота (28-карбокси-α-амирин). Урсоловая кислота обнаружена во многих растениях (бруснике обыкновенной - Vaccinium vitis-idaea, клюкве четырехлепестной - Qxycoccus quadripetalus и др.), причем встречается в виде как гликозидов, так и свободного агликона.

β-амирин лежит в основе следующих веществ:

- олеаноловая кислота (28-карбокси-β-амирин). Олеаноловая кислота является агликоном сапонинов (аралозидов) аралии манчжурской (Araliamandshurica), синюхи голубой (Polemonium caeruleum), каштана конского(Aesculus hyppocastanum), первоцвета весеннего (Primula veris), календулы лекарственной (Calendula officinalis), патринии средней (Patrinia intermedia) и др.

- глицирретиновая кислота (11-оксо-29-карбокси-β-амирин). Глицирретиновая кислота является агликоном глицирризиновой кислоты (в 3 положенииприсоединяется углеводная цепь из двух молекул глюкуроновой кислоты). Глицирризиновая кислота содержится в солодке голой (Glycyrrhiza glabra) и солодке уральской (G.uralensis).

Углеводная часть тритерпеновых сапонинов может присоединяться к агликону в различных положениях:

В 3 положении за счет гидроксильной (-ОН) группы;

В 28 положении за счет карбоксильной (-СООН) группы (при этом связь агликона с сахаром называется ацилгликозидной);

С сапогенином могут быть связаны две углеводные цепи (за счет гидроксильной группы в 3 положении и карбоксильной группы в 28 положении). В этом случае сапонины относятся к дигликозидам.

Углеводная часть тритерпеновых гликозидов может содержать 1-11 моносахаридов (глюкоза, галактоза, рамноза, арабиноза, фруктоза, глюкуроновая и галактуроновая кислоты). Она может быть линейной и разветвленной (например, у аралозидов - сапонинов аралии манчжурской). Разветвление углеводной цепи происходит от первого сахарного остатка, связанного с агликоном.

Биосинтез сапонинов

Биогенетическим предшественником агликонов как стероидных, так и тритепеновых сапонинов в растениях является сквален.

Под воздействием ферментов сквален подвергается стереоспецифической циклизации. Бели циклизация сопровождается потерей атомов углерода, образуется холестерол, содержащий 27 атомов углерода. При окислении и циклизации боковой углеродной цепи холестерола (из 8 атомов) образуется диосгенин.

Образование тетрациклических тритерпеновых сапогенинов идет, вероятно, через стадии биосинтеза стероидных соединений. Данный вопрос пока еще до конца не изучен и является научной гипотезой.

Распространение сапонинов в растительном мире,

локализация ерастениях. Влияние условий обитания

и онтогенеза на накопление сапонинов

В растительном мире более широко распространены тритерпеновые сапонины. Они обнаружены в растениях почти 70 семейств. Наиболее богаты тритерпеновыми сапонинами представители семейств аралиевые (Araliaceae), синюховые (Polemoniaceae), бобовые (Fabaceae), астровые (Asteraceae), яснотковые (Lamiaceae) и др.

Стероидные сапонины встречаются значительно реже и обнаружены, главным образом, в растениях семейств диоскорейные (Dioscoreaceae), лилейные (Liliaceae), норичниковые (Scrophulariaceae), парнолистниковые (Zygophyllaceae), лютиковые (Ranunculaceae), амарилиссовые (Amarillidaceae). Стероидные сапонины часто сопровождают в растениях сердечные гликозиды (Digitalis sp., Convallariamajalis, Adonis vernalis).

Растения, вырабатывающие тритерпеновые сапонины, не содержат стероидные, и наоборот.

В растениях сапонины обычно находятся в клеточном соке почти всех органов в растворенном виде.

Сапонины найдены во всех органах растений:

В траве (астрагал шерстистоцветковый - Astragalus dasyantus, хвощ полевой - Equisetum arvense, якорцы стелющиеся - Tribulus terrestris);

В листьях (почечный чай - Ortosyphon stamineus);

В семенах (кашатан конский - Aesculus hyppocastanum);

В подземных органах (диоскорея ниппонская - Dioscorea nipponica, синюха голубая - Polemonium caeruleum, заманиха высокая - Echynopanax elatum, солодка голая - Glycyrrhiza glabra и с.уральская G.uralensis, женьшень - Рапах ginseng, аралия манчжурская - Aralia mandshurica).

В подземных органах накапливается наибольшее количество сапонинов.

Предположительно, сапонины принимают участие в биохимических процессах в растениях:

В малых концентрациях они ускоряют прорастание семян, рост и развитие растений, а в больших, наоборот, тормозят. Таким образом, сапонины играют роль гормонов роста растений;

Сапонины оказывают влияние на проницаемость растительных клеток, что связано с их поверхностной активностью.

На накопление сапонинов влияют стадии онтогенеза (т.е. развития) растений. Максимальное количество сапонинов в сырье содержится в фазы:

Бутонизации и начала цветения (ортосифон тычиночный и астрагал шерстистоцветковый);

В конце вегетации, когда биомасса лекарственного растительного сырья максимальна (солодки, синюха, заманиха, аралия, женьшень, диоскорея);

В период плодоношения (каштан конский).

Дикорастущая синюха голубая достигает максимальной продуктивности к 5-6 году жизни, а в культуре - к 2-3 году. При этом содержание сапонинов в подземных органах находится на одном уровне;

Влияние факторов внешней среды на накопление сапонинов строго специфично. Среди них трудно выявить общие закономерности для всех растений. Отметим лишь отдельные моменты:

Растения семейства аралиевых являются эндемиками Дальнего Востока, где сложился собственный климатический и почвенный режим;

Зависимость накопления глицирризиновой кислоты от типа почв и ее засоленности характерна для солодки. Чем больше засоленность, тем меньше глицирризиновой кислоты содержат корни солодки. Повышение влажности почвы способствует накоплению глицирризиновой кислоты.

Сырьевая база растений, содержащих сапонины

Синюха голубая растет по опушкам и вдоль лесных дорог в лесной и лесостепной зонах европейской части России и Сибири,

Женьшень, заманиха, аралия, диоскорея ниппонская встречаются в лесах Дальнего Востока (Приморский, Хабаровский края).

Солодки голая и уральская часто образуют сплошные заросли в поймах и долинах рек в степных и пустынных районах европейской части России и Сибири.

В этих же регионах, как сорняк, встречаются якорцы стелющиеся.

Синюха голубая не образует крупных зарослей, пригодных для промышленных заготовок, в связи с чем, ее культивируют.

Женьшень культивируют на Дальнем Востоке.

Ортосифон тычиночный импортируют из стран тропической Азии.

В последние годы перспективным является метод культуры тканей. Он заключается в выращивании на определенных питательных средах биомассы сырьевой части лекарственных растений. Полученная таким образом биомасса используется в дальнейшем для получения лекарственных препаратов.

В России метод культуры тканей был разработан и освоен на примере женьшеня. Культура тканей женьшеня под названием «Биоженьшень» используется для получения настойки.

Физические, химические и биологические свойства

сапонинов

Физические свойства. Сапонины - бесцветные или желтоватые аморфные вещества. В кристаллическом состоянии выделены гликозиды, имеющие в углеводной цепи до 4 моносахаридов. Оптически активны.

Гликозиды растворимы в воде. Растворимость увеличивается с возрастанием углеводной цепи. В разведенных (60-70%) спиртах растворяются на холоду; в более крепких (80-90%) спиртах - только при нагревании, а при охлаждении выпадают в осадок. Нерастворимы в органических растворителях (ацетон, хлороформ, бензол).

Свободные сапогенины не растворяются в воде и хорошо растворимы в органических растворителях.

В зависимости от рН водных растворов сапонины делят на:

- нейтральные - стероидные и тетрациклические тритерпеновые сапонины;

- кислые - пентациклические тритерпеновые сапонины. Их кислотность обусловлена наличием карбоксильных (-СООН) групп в структуре агликона или присутствием уроновых кислот в углеводной цепи.

Специфическим свойством сапонинов является их способность снижать поверхностное натяжение жидкостей (воды) и давать при встряхивании стойкую обильную пену. Такая поверхностная активность связана с наличием в молекулах сапонинов одновременно как гидрофильного, так и липофильного остатков.

Химические свойства обусловлены структурой агликона, наличием отдельных функциональных групп, а также присутствием гликозидной связи.

Сапонины гидролизуются под влиянием ферментов и кислот. Производные олеаноловой и глицирритиновой кислот гидролизуются под воздействием щелочей.

При взаимодействии с кислотными реагентами (SbCl3, SbCl5, FeCl3, конц. H 2 SO 4) образуют окрашенные продукты.

Кислые сапонины образуют нерастворимые комплексы с солями тяжелых металлов (Ва, РЬ).

Сапонины способны образовывать комплексы с белками, стеринами, липидами, фенольными соединениями. В составе комплексов сапонины не обладают гемолитической и поверхностной активностью.

Сапонины, имеющие в своей основе стероидное ядро, вступают в специфическую реакцию Либермана-Бурхарда.

Биологические свойства. Сапонины обладают гемолитической активностью. Они способны растворять липидную часть оболочки эритроцитов. В результате этого оболочка из полупроницаемой становится проницаемой. Гемоглобин свободно поступает в плазму крови и растворяется в ней. Образуется красный прозрачный раствор - «лаковая кровь».

Гемолитической активностью обладают только гликозиды. В связи с этим сапонины не применяются для внутривенного введения, т.к. вызывают анемию. При приеме внутрь, после гидролиза в желудочно-кишечном тракте до агликонов, сапонины теряют гемолитическую активность.

Гемолиз эритроцитов вызывают не все сапонины. Этим свойством не обладают сапонины солодки. -

Сапонины токсичны для холоднокровных животных (рыбы, лягушки, круглые черви). Они нарушают функцию жабер, которые являются не только органом дыхания, но и регулятором солевого осмотического давления в организме. Сапонины парализуют или вызывают гибель холоднокровных животных даже в больших разведениях (1:1 000 000).

Агликоны сапонинов для холоднокровных животных не токсичны.

Оценка качества сырья, содержащего сапонины.

Методы анализа

Наличие сапонинов в лекарственном растительном сырье можно установить при помощи качественных реакций, которые проводят непосредственно с сырьем или с извлечением из него.

Качественные реакции на сапонины основаны на их физических, химических и биологических свойствах.

Государственная фармакопея XI издания (вьш.2) рекомендует использовать качественные реакции для подтверждения подлинности для трех видов сырья.

1. Корневища с корнями синюхи голубой . С водным извлечением проводят реакцию пенообразования, основанную на способности сапонинов снижать поверхностное натяжение жидкости (воды) и давать в отваре стойкую обильную пену после встряхивания»

2. Корни аралии манчжурской . Метанольное извлечение хроматографируют в тонком закрепленном слое селикагеля (на пластинках «Силуфол») в системе растворителей хлороформ-метанол-вода (61:32:7). В качестве свидетеля используют раствор «Сапарала». Хроматограмму проявляют 20% H 2 SO 4 и нагревают в сушильном шкафу (t=lO5°C) в течение 10 мин. Появляются пятна вишневого цвета.

Сапонины- безазотистые гликозиды, которые при взбалтывании в воде образуют стойкую пену. Сапонины получили своё название от латинского «sapo», что в переводе означает мыло. Первые сапонины были выделены в 1819 г из мыльнянки, принадлежащей к семейству гвоздичных. Молекула сапонина,как и все , состоит из углеродной части- моносахарида и агликона, называемого сапогенином. Они хорошо растворимы в воде и спирту и не содержат серы.

Распространение сапонинов

.

Сапонины встречаются как в растительном, так и в животном мире. Растения содержат сапонины в корнях на примере , синюхи, первоцвета, диоскореи, в листьях наперстянки и в цветках коровяка, в растворённом состоянии в клеточном соке. Среди животного мира на сапонины богаты пиявки, пчёлы и очковые змеи.

Классификация сапонинов

.

По химическому строению агликона сапонины делятся на стероидные и тритерпеновые.
Стероидные сапонины.
Стероидные сапонины принадлежат к группе природных гликозидов, которым характерна значительная гемолитическая активность. Стероидные сапонины находятся в разных растениях, но главным образом в растениях семейства бобовых, лютиковых, лилейных, диоскорейных. При изучении биологического действия стероидных сапонинов выявлено значительную фунгицидное, противоопухолевое, цитостатическое действие. Они понижают артериальное давление, нормализуют сердечный ритм, замедляют и углубляют дыхание. Препарат полиспонин, изготовленный из диоскореи, используют для больных на . Стероидные сапонины являются исходным материалом для синтеза стероидных гормонов.
Тритерпеновые сапонины.
Большинство тритерпеновых сапонинов оказывают гемолитическое действие. Они разрушают оболочку эритроцитов и освобождают гемоглобин. Тритерпеновые сапонины обладают горьким вкусом, раздражают слизистую оболочку глотки, желудка и кишок, вызывают рвоту и увеличивают секрецию бронхов. Назначают сапонины при сухом кашле для разрежения мокроты. Тритерпеновые сапонины различных растений оказывают различное фармакологическое действие. Сапонины солодки голой обладают эстрогенной активностью, сапонины элеутерококка увеличивают сопротивляемость организма, панаксозиды корня женьшеня имеют адаптогенное действие. Тритерпеновые сапонины олеиновой кислоты, находящиеся в корнях аралии маньчжурской используют для снятия стресса, усиливает сокращение миокарда, употребляют при астеноневротических состояниях.
Тритерпеновые сапонины очень широко используют в пищевой и лёгкой промышленности. Корень солодки используют для производства пива и шипучих напитков, а также для мочения яблок и брусники, и изготовления халвы. Пена тритерпеновых сапонинов не содержит щелочей и тому широко используется для стирки белья, которые не теряют структуру и цвет. Текстильная промышленность использует тритерпеновые сапонины для фиксации цвета, а пожарная для образования пены в противопожарных средствах.

ГЛИКОЗИДЫ (гетерозиды ) широко распространенные в природе, особенно в растительном мире, вещества, в молекулах которых остатки сахаров (гликозильные остатки) связаны через атом кислорода, серы или азота с молекулой вещества, не являющегося сахаром и называемого агликоном. Соответственно различают О-(I), S-(II) и N-(III) гликозиды. Термином «C-гликозиды» обозначают соединения, в которых гликозильный остаток связан непосредственно с атомом агликона (IV):

К Г. принадлежат многие лекарственные вещества, в т. ч. оказывающие избирательное действие на сердечную мышцу. Наибольшее значение и распространение в природе имеют О- и N-гликозиды.

Г. делятся на пиранозиды и фуранозиды в зависимости от наличия шести- или пятичленного кольца в остатке сахара (см. Моносахариды), а также на альфа-гликозиды и бета-гликозиды в зависимости от альфа- и бета-конфигурации C-атома, связанного через кислород с агликоновой частью молекулы.

O-Гликозиды

O-Гликозиды можно рассматривать как производные сахаров, в полуацетальном гидроксиле которых атом водорода заменен радикалом алифатического, карбоциклического или гетероциклического соединения. Хотя во многих O-гликозидах гликоновой частью молекулы являются остатки простых сахаров, однако ею могут быть и остатки олигосахаридов (ди-, три-и т. д. сахаридов). Встречающиеся в природе O-гликозиды в большинстве случаев являются бета-гликозидами. Наконец, в зависимости от природы сахарной компоненты различают пентозиды (О-гликозиды пентоз), напр, ксилозиды (O-гликозиды ксилозы), арабинозиды (O-гликозиды арабинозы) и др.; гексозиды (O-гликозиды гексоз), напр, глюкозиды (производные глюкозы), галактозиды (производные галактозы), фруктозиды, а также биозиды (O-гликозиды биоз - дисахаридов), напр, мальтозиды, лактозиды и т. д. По типу гликозидов построены олигосахариды (см.) и высшие полисахариды (см.).

По характеру агликона О-гликозиды делят на ряд групп, в т. ч. на цереброзиды (см.) - галактозиды сфингозина; стероидные О-гликозиды, напр, сердечные гликозиды (см.), сапонины (см.) и др.; азотсодержащие O-гликозиды, напр, амигдалин, индикан; гликоалкалоиды, соединения, в которых сахарная компонента соединена O-гликозидной связью с остатком алкалоида (соланин, демиссин) и др.

O-гликозиды могут быть получены синтетически или же выделены из природных источников. Так, алкилгликозиды получают при взаимодействии сахара с избытком спирта в присутствии каталитически действующего сухого хлористого водорода или ферментов альфа- и бета-глюкозидаз. Многие природные O-гликозиды сложного строения (флавонгликозиды, стероидные гликозиды и др.) экономически выгодно выделять из природных источников. Биосинтез O-гликозидов в растениях происходит преимущественно путем переноса гликозильного остатка с нуклеозиддифосфатсахара на фенол или спирт, напр, уридиндифосфатглюкоза + гидрохинон -> уридинфосфат + гидрохинон-бета-D-глюкозид (арбутин) .

О-Гликозиды представляют собой твердые кристаллические вещества, чаще всего обладающие разнообразным специфическим вкусом. Подавляющее большинство О-гликозидов не гидролизуется щелочами; исключение составляют лишь некоторые Г., агликонами которых являются фенолы, енолы и спирты, содержащие в β-положении отрицательно заряженные группы (напр., СО; NO 2). O-Гликозиды обычно не обладают восстанавливающей способностью, за исключением Г., чувствительных к щелочам, а также тех Г., агликоны которых сами обладают восстанавливающими свойствами.

Г. гидролизуются к-тами, причем фуранозиды гиролизуются во много раз быстрее пиранозидов. Характер агликона, а также конфигурация всех асимметрических атомов остатка сахара оказывают влияние на скорость гидролиза, альфа- и бета-гликозиды гидролизуются специфическими ферментами - альфа- и бета-глюкозидазами (см. Глюкозидазы).

Многие O-гликозиды находят применение В медицине как ценные лекарственные Средства, (см. ниже); некоторые имеют токсикол. значение (сапонины, соланин) или применяются как витамины (рутин - витамин P).

S-Гликозиды

S-Гликозиды (тиогликозиды) представляют собой производные циклических форм I-тиосахаридов, в меркаптогруппе (-SH) которых атом водорода замещен радикалом.

S-Гликозиды можно получить взаимодействием ацетатов гликозилбромидов с тиофенолами в присутствии щелочи с последующим омылением ацетильных групп образовавшегося S-гликозидяого ацетил производного. S-Гликозиды очень стойки по отношению к кислотному гидролизу, но Крепкие щелочи расщепляют их с образованием тиосахаров.

Важнейшим природным S-гликозидом является Г. черной горчицы - синигрин, расщепляющийся ферментом тиоглюкозидазой (мирозиназой, синигриназой; К Ф 3.2.3.1) с образованием аллилового горчичного масла; известно св. 40 природных S-гликозидов, близких синигрину.

N-Гликозиды

N-Гликозиды (вторичные или третичные гликозиламины) рассматриваются как производные гликозимина (первичного гликозиламина); они образуются в результате замещения одного или двух атомов водорода в аминогруппе остатками соединений алифатического или гетероциклического ряда.

Как и O-гликозиды, N-гликозиды могут быть построены как пиранозиды или фуранозиды и иметь альфа-(I) и бета-форму (II). В отличие от О-гликозидов, N-гликозиды в р-рах могут находиться частично в виде ациклических таутомерных форм (типа оснований Шиффа), являющихся промежуточными (III):

Впервые кристаллические N-гликозиды были получены взаимодействием анилина и сахаров, многие N-гликозиды получают непосредственным взаимодействием сахара и амина на холоду или при нагревании в спиртовой, спиртово-водной или водной среде, в отсутствие или в присутствии катализаторов - уксусной или соляной к-ты, хлористого аммония и т. д.

Свойства N-гликозидов зависят в значительной степени от природы агликонов. Алкил- и арил- N-гликозиды (напр., пурин- и пиримидин-N-гликозиды) устойчивы к действию к-т и щелочей.

К N-гликозидам принадлежат исключительно важные в обмене веществ продукты расщепления нуклеиновых к-т и нуклеопротеидов (нуклеотиды и нуклеозиды), некоторые важнейшие коферменты (см.), аденозинтрифосфорная кислота (см.), уридинтрифосфат, никотинамидадениндинуклеотид, никотинимидадениндинуклеотидфосфат (НАД и HАДФ), некоторые антибиотики и т. п.

Искусственно синтезированы N-гликозиды сульфонамидных препаратов: «глюкострептоцид», N-глюкозид сульфидина, норсульфазолглюкозид, отличающиеся от исходных агликонов гораздо большей растворимостью, меньшей токсичностью и иногда видоизмененным характером действия.

N-Гликозиды алифатических аминов с длинной цепью (додецил- и октадециламинов) применяются в текстильной промышленности.

N-Гликозиды некоторых ароматических аминов предложены в качестве антиоксидантов каучука.

C-Гликозиды

C-Гликозиды встречаются в природе (бергенин, псевдоуритин) и могут быть получены синтетически; отличаются от всех других групп Г. неспособностью к гидролизу.

Лекарственные гликозиды

Лекарственные гликозиды не являются единой фармакол, группой: спектр их действия весьма широк, что обусловлено строением как агликона, так и гликоновой части их молекулы. Гликоновая часть усиливает и ускоряет действие агликона, увеличивает его растворимость, способствует лучшему его проникновению в клетки организма, придает стабильность молекуле Г. и обусловливает соответствующую особенность действия.

Из обширного класса О-гликозидов наибольшее значение имеют стероидные Г., и в первую очередь производные циклопентапергидрофенантрена, относящиеся к группе сердечных гликозидов (см.). Другие стероидные Г. применяют для лечения атеросклероза (диоспонин и др.), заболеваний вен (асцин, эсфлазид и др.). Получены препараты Г. противовоспалительного, гормонального, нейротропное, тонизирующего и гонадотропного действия (аралозиды, АВС-сапорал, панаксозиды из корня жень-шеня и др.). Среди О-гликозидов следует отметить также препараты слабительного и мочегонного действия, а также биофлавоноиды (см.).

Для лечения некоторых заболеваний сосудов применяются Г. кумаринов и хромонов (эскулин, келлозид).

Ряд лекарственных Г. оказывает антимикробное, антивирусное и цитопатическое действие. К таким Г. относятся некоторые антибиотики, получаемые из Strep tomyces (см. Стрептомицины) и других источников, амигдалин и др. Есть сведения, что синтетические N-гликозиды, имеющие в качестве гликоновой части или в ее составе рибозу и дезоксирибозу, обладают широким спектром лекарственного действия и применяются в качестве стимуляторов обмена веществ, иммунодепрессантов (см. Иммунодепрессивные вещества), химиотерапевтических средств и др.

S-и С-гликозиды содержатся в ряде растений (горчица, черногорка, боярышник и др.). Многие лекарственные Г. обладают горьким вкусом, поэтому растения, их содержащие (золототысячник, полынь и др.), используют в качестве горечей (см.).

Лекарственные Г. в большинстве случаев относятся к сильнодействующим препаратам и применяются в небольших дозах.

Гликозиды в судебно-медицинском отношении

Идентификация Г. имеет большое значение при случайных отравлениях.

Чаще всего наиболее токсичными оказываются сердечные Г. Интоксикация может развиться даже при применении терапевтических доз. При суд.-мед. установлении отравлений Г. большое значение имеют особенности клин, картины: сильная слабость, судороги, коматозное состояние, брадикардия; нарушение проводимости и возникновение возбуждения сердечной деятельности, что может вызвать тахиаритмию желудочков сердца. Полное прекращение сердечной деятельности может наступить преимущественно в стадии диастолы. При отравлениях Г. могут наблюдаться нарушения функции ц. н. с. и жел.-киш. тракта, а также олигурия. При исследовании трупа специфические изменения органов не обнаруживают, иногда отмечают нек-рое их полнокровие.

Для доказательства смертельных отравлений Г. большое значение имеют данные суд.-хим. исследования трупного материала, а также остатков препаратов, послуживших предположительно причиной смерти.

Г. из организма человека выделяются преимущественно с желчью и частично с мочой. Для суд.-хим. экспертизы особое значение имеет исследование желчи и желчного пузыря, а также участков печени, прилегающих к желчному пузырю и тканей с места инъекций.

Сохраняемость Г. в трупном материале в течение 1 года достигается консервированием этанолом, к-рое должно производиться непосредственно после взятия объектов исследования.

Схема судебно-хим. определения Г. включает несколько основных стадий: экстрагирование трупного материала 70% этанолом при pH 7,0; осаждение в экстракте белков; очистку экстрагированием четыреххлористым углеродом; экстрагирование олеандрина и ланатозидов хлороформноспиртовой смесью 9:1 (т, к. строфантин является сильно гидрофильным соединением, то в этих условиях он не извлекается); очистку извлеченной фракции олеандрина и ланатозидов от сопутствующих веществ щёлочью; качественно-количественное определение и пр.; экстрагирование строфантина спиртово-хлороформной смесью (8:2); осаждение строфантина из водной фазы сульфатом аммония при полном насыщении, растворение осадка, повторное осаждение и экстрагирование строфантина с последующим качественно-количественным определением его.

Качественное обнаружение строфантина производится методом хроматографии на бумаге, олеандрина и ланатозидов - методом тонкослойной хроматографии (см.). Пятна строфантина специфически проявляются 3,5-динитробензойной к-той, мета-динитробензолом и 2,4-динитродифенилсульфоном; олеандрин проявляется еще кроме указанных реагентов, концентрированной серной к-той, содержащей следы железа.

Количественное определение Г. в элюатах производится, в основном, фотоколориметрированием окрашенных р-ров после реакции с 2,4-динитродифенилсульфоном в щелочной среде.

Описанная схема исследования позволяет открывать 30- 50 мкг Г. на 100 г влажного веса ткани.

Библиография: Власенко Л. М. К вопросу систематического судебно-химического определения сердечных гликозидов, в кн.: Вопр. суд. мед., под ред. В. И. Прозоровского, с. 233, М., 1971; ВотчалБ. Е. и С луцкийМ. К. Сердечные гликозиды, М., 1973; Кочетков Н. К. и др. Химия углеводов, М., 1967; Савицкий H. Н. Фармакодинамика сердечных гликозидов. Л., 1974, библиогр.; Степаненко Б. Н. Углеводы, Успехи в изучении строения и метаболизма, М., 1968.

Б. Н. Степаненко; Я. И. Хаджай (фарм.), А. Ф. Рубцов (суд.).



Loading...Loading...