Изменение давления в разных частях сосудистого русла. Давление крови в различных отделах сосудистого русла. Движение крови по сосудам. Чтобы пульс был в норме

Часть II. Физиология сосудистого русла

1. Краткая характеристика основных гемодинамических показателей

Гемодинамика представляет собой раздел физиологии, изучающий закономерности движения крови в сосудистой системе. Она является составной частью гидродинамики – раздела физики, исследующего законы движения жидкости по трубам.

Ключевыми гемодинамическими параметрами, во многом характеризующими интенсивность сердечной деятельности и функциональное состояние сосудистого русла являются следующие:

Ø минутный объем кровотока (или минутный объем сердца, подробно рассмотрен в части I) – количество крови, выбрасываемое одним из желудочков сердца за 1 минуту; этот же объем протекает через суммарное поперечное сечение любого участка большого или малого круга кровообращения за 1 минуту. Минутный объем, с одной стороны, определяется как произведение систолического объема на частоту сердечных сокращений (т.е. на количество таких систол, произведенных за минуту). С другой стороны, минутный объем кровотока можно определить, исходя из основного уравнения гидродинамики (1)

где Q – количество жидкости, протекающее через поперечное сечение трубки в единицу времени,

Р 1 и Р 2 – давление в начале и в конце трубки, соответственно разница между этим давлениями (т.н. градиент давления по ходу трубки) является той силой, которая способствует продвижению жидкости в трубке

R – сопротивление движению жидкости, представляет собой силу, препятствующую продвижению жидкости

Если применить данное уравнение к большому кругу кровообращения, то Р 1 и Р 2 – это будет соответственно давление в устье аорты и в области синусов полых вен (мест впадения полых вен в сердце), Q – минутный объем кровотока, а R – суммарное периферическое сопротивление движению крови. Поскольку давление в области синусов полых вен почти равно нулю, то основное уравнение гидродинамики для сердечно-сосудистой системы (в частности, для большого круга кровообращения) будет выглядеть следующим образом:

где АД – артериальное давление в аорте

R – суммарное периферическое сопротивление движению крови в большом круге кровообращения

МО – минутный объем кровотока в большом круге кровообращения (т.е. то количество крови, которое выбрасывается левым желудочком за 1 минуту, оно же пересекает любое суммарное поперечное сечение большого круга кровообращения за 1 минуту)

Рис. 15. Распределение минутного объема крови в различных отделах большого круга кровообращения

Ø периферическое сосудистое сопротивление – это суммарное сопротивление, создаваемое сосудистым руслом (большого или малого круга кровообращения) движению крови. Сопротивление, создаваемое каждым в отдельности сосудом (подобно сопротивлению, создаваемому какой-то трубкой) можно рассчитать по формуле Пуазейля (3):

где R – сопротивление движению крови

l – длина сосуда

n - вязкость крови, протекающей по сосуду

r – радиус сосуда.

Из данного уравнения следует, что сопротивление движению крови будет тем больше, чем меньше внутренний диаметр сосуда и чем больше его длина и вязкость крови, протекающей по нему.

При движении крови вдоль сосуда в центре потока движутся в основном форменные элементы (осевой ток), а вдоль стенки сосуда – плазма (пристеночный ток). Следовательно, вязкость крови, составляющей осевой ток, будет гораздо выше, чем таковая пристеночного тока. Вместе с тем в большинстве сосудов (за исключением капилляров) выражены и осевой и пристеночный токи, в связи с чем суммарная вязкость крови от сосуда к сосуду не изменяется. И только в капиллярах, отличающихся самым малым диаметром (5-7 мкм) резко сокращается доля осевого тока, что обуславливает уменьшение вязкости крови, заполняющей капилляры.

Самыми узкими сосудами в сосудистом русле являются капилляры. Именно поэтому сопротивление, создаваемое каждым в отдельности капилляром, больше такового создаваемого каждым в отдельности каким-либо другим более крупным сосудом (артериолой, венулой или мелкой артерией).

Вместе с тем суммарное сопротивление, создаваемое какими-то участками сосудистого русла, зависит не только от диаметра просвета сосудов, образующих этот участок, но и от способа их соединения. Известно, что при последовательном подключении трубок суммарное сопротивление движению, создаваемое ими, определяется как сумма сопротивлений каждой в отдельности трубки:

R последовательное = R 1 +R 2 +R 3 +………………+R n + и т.д., (4)

где R последовательное – суммарное периферическое сопротивление, создаваемое группой последовательно соединенных трубок,

В случае параллельного соединения трубок суммарное сопротивление, создаваемое ими, определяется следующим образом:

R параллельное =и т.д. (5)

где R параллельное – суммарное периферическое сопротивление, создаваемое группой параллельно соединенных трубок,

R 1 , R 2 , R 3 и т.д. – соответственно сопротивления движению, создаваемые каждой в отдельности трубкой.

Следовательно, суммарное сопротивление движению, создаваемое определенной группой трубок, будет выше при последовательном их соединении и меньше в случае параллельного их соединения.

Капилляры, хотя и обладают минимальным диаметром по сравнению с другими типами сосудов, и каждый в отдельности из них создает максимальное сопротивление движению жидкости, все же по причине преимущественно параллельного их подключения суммарное сопротивление, создаваемое капиллярами меньше такового, создаваемого артериолами (более крупные сосуды (d=15-70 мкм), включенные в цепь движения крови в большей степени последовательно, чем параллельно). В связи с тем, что артериолы создают в своей совокупности наибольшее сопротивление движению крови, их называют резистивными сосудами или сосудами сопротивления . Кроме того, благодаря наличию гладкомышечных волокон в составе своей стенки, артериолы, в отличие от капилляров, способны активно изменять величину своего просвета, а, следовательно, и сопротивление движению крови. Наконец, в связи с тем, что от артериол отходят капиллярные сети, именно просвет артериол (а следовательно, и их пропускная способность) является определяющим фактором кровенаполнения капилляров и уровня кровоснабжения каждого конкретного участка ткани. В связи с тем, что от внутреннего просвета артериол в конечном итоге зависит интенсивность кровоснабжения органов, им отводят роль своеобразных кранов в сердечно-сосудистой системе, делающих возможным реализацию перераспределительного механизма в сосудистом русле (пререраспределения крови между органами, работающими с различной интенсивностью). Так, минутный объем кровотока постоянно перераспределяется между различными органами: артериолы интенсивно функционирующих органов расширяются, в результате чего в их капиллярное русло притекает гораздо больше крови, чем в покое, а артериолы покоящихся или работающих с низкой интенсивностью органов, наоборот, суживаются, вследствие чего уменьшается и уровень их кровоснабжения. Общая протяженность всего сосудистого русла человека составляет около 100 тысяч километров, а объем периферической крови (т.е. крови, находящейся в циркуляции) не превышает 5-10 л (8-10% от массы тела человека). В связи с этим нормально кровоснабжаются в каждый данный момент лишь жизненно важные и интенсивно работающие органы, тогда как большая часть сосудистого русла пустует.

Ø кровяное давление – это суммарный запас энергии, которым обладает движущаяся кровь в определенном участке сосудистого русла. Этот суммарный запас энергии сообщается крови в результате работы сердца. Различают артериальное, капиллярное и венозное давление. В связи с тем, что кровь при своем движении преодолевает силы сопротивления движению (прежде всего трение о стенку сосуда), кровяное давление по ходу сосудистого русла снижается. Так, максимальным оно является в сосудах, выносящих кровь из сердца (в аорте и легочном стволе), а минимальным (близким, но неравным нулю) – в сосудах, возвращающих кровь в сердце (в полых и легочных венах). Таким образом, чем дальше удалилась кровь от сердца как насоса (т.е. чем больший путь она прошла по сосудистому руслу), тем меньшим запасом суммарной энергии она обладает (т.е. тем ниже кровяное давление в данном участке сосудистого русла).

В начальной части сосудистого русла (в крупных, средних и даже некоторых мелких артериях) кровяное давление зависит от фазы сердечного цикла: в момент систолы, когда желудочками изгоняются порции крови, оно возрастает, а в момент диастолы – напротив, понижается. В мелких же артериях, артериолах, капиллярах, венулах и венах кровяное давление не зависит от фаз сердечного цикла, оно уменьшается по ходу сосудистого русла, но в каждом данном его участке является постоянным, не зависящим от фазы сердечного цикла. Превращению пульсирующего кровотока в постоянный способствуют крупные артерии (сосуды эластического типа) и отчасти средние артерии (сосуды смешанного типа – мышечно-эластического). Благодаря своей эластичности стенки этих артерий в момент систолы желудочков растягиваются, принимая определенное количество крови (при этом давление в них повышается до уровня максимального или систолического), тогда как в момент диастолы – сжимаются, проталкивая принятую из желудочка порцию крови далее (при этом давление в начальном отделе сосудистого русла понижается до уровня минимального или диастолического). Таким образом, пульсирующий кровоток постепенно по ходу сосудистого русла преобразуется в постоянный, а пульсовые колебания артериального давления – гаснут. Постоянное, не зависящее от фаз сердечного цикла, давление в артериолах, капиллярах и венулах, составляющих микроциркуляторное русло (и особенно в капиллярах), является основным залогом нормального осуществления транскапиллярного обмена – того, ради чего существует система кровообращения вообще.

В связи с тем, что давление в артериальной части сосудистого русла колеблется в динамике сердечного цикла, различают следующие его разновидности:

· максимальное или систолическое давление – это давление в начальном отделе сосудистого русла в момент систолы желудочков, оно во многом характеризует насосную функцию сердца (величину систолического выброса) и растяжимость крупных и средних артерий. Различают боковое и конечное систолическое давление. Боковое давление – это давление крови, передаваемое на стенки сосудов. Конечное давление – это суммарный запас потенциальной и кинетической энергии, которым обладает движущаяся кровь на определенном участке сосудистого русла; оно на 10-20 мм.рт.ст. выше бокового. Разность между конечным и боковым систолическим давлением называется ударным давлением, которое во многом отражает интенсивность сердечной деятельности и состояние стенок сосудов. В норме величина систолического давления в плечевой артерии у здоровых молодых людей составляет 110-125 мм.рт.ст., а в легочном стволе – 25мм.рт.ст.

· минимальное или диастолическое давление – это давление в начальном отделе сосудистого русла в момент диастолы желудочков, во многом зависит от периферического сосудистого сопротивления. В норме его величина в плечевой артерии у здоровых молодых людей составляет 60-80 мм.рт.ст., а в легочном стволе – 10 мм.рт.ст.

· среднее артериальное давление – это давление, отражающее энергию движущейся крови, так как если бы она вытекала из сердца не порциями, а непрерывной струей (т.е. без пульсовых колебаний). Иными словами, среднее артериальное давление является равнодействующей артериального давления в разные фазы сердечного цикла и отражает энергию непрерывного движения крови. В связи с тем, что продолжительность понижения диастолического давления больше, чем повышения систолического, среднее артериальное давление ближе к величине диастолического давления и может быть рассчитано по следующей формуле:

АД среднее = 0,42 АД систолическое + 0,58 АД диастолическое (6)

· пульсовое артериальное давление является амплитудой колебаний давления в начальном отделе сосудистого русла, обусловленных периодической насосной деятельностью сердца. Пульсовое артериальное давление определяется как разность между систолическим и диастолическим артериальным давлением и во многом характеризует насосную функцию сердца (зависит от величины систолического выброса)

АД пульсовое = АД систолическое - АД диастолическое (7)

Пульсовые колебания артериального давления в крупных сосудах (т.н. волны первого порядка , самые частые) обусловлены ритмичной периодической работой сердца . Наряду с этими пульсовыми волнами на кривой артериального давления, как правило, наблюдаются еще и дыхательные волны (или волны второго порядка ) – небольшие колебания артериального давления, совпадающие с дыхательными движениями (при вдохе артериальное давление несколько понижается, а при выдохе – наоборот, повышается). Наконец, в некоторых случаях на кривой артериального давления могут появляться волны третьего порядка – самые медленные повышения и понижения артериального давления, каждое из которых охватывает несколько волн второго порядка; эти волны являются следствием периодического изменения тонуса сосудодвигательного центра , вызванного, как правило, недостаточным кровоснабжением мозга кислородом или отравлением его некоторыми ядами.

Рис. 16. Кривые изменения кровяного давления и линейной скорости кровотока в сосудистом русле большого круга кровообращения. Круговая диаграмма отражает изменение суммарного просвета сосудов по ходу сосудистого русла.


Рис. 17. Схема кривой артериального давления

I – волны первого порядка (пульсовые)

II – волны второго порядка (дыхательные)

III – волны третьего порядка

Величину артериального давления можно определить из основного уравнения гемодинамики, преобразованного для большого круга кровообращения (см. уравнение 2):

где АД – кровяное давление в начальной части сосудистого русла

МО – минутный объем крвотока

R – периферическое сосудистое сопротивление.

Из данного выражения следует, что артериальное давление зависит от

ü минутного объема кровотока , а значит, и от интенсивности сердечной деятельности – частоты и силы сердечных сокращений (поскольку МО=СОхЧСС)

ü периферического сосудистого сопротивления , во многом определяемого тонусом (определенной степенью сужения) артериол, вязкостью крови, характером ее движения и некоторыми другими обстоятельствами.

Ø линейная скорость кровотока – это скорость перемещения частиц крови и самой плазмы вдоль продольной оси сосуда. Она определяется следующим образом:

где V – линейная скорость кровотока,

Q – объемная скорость кровотока (соответствующая минутному объему кровотока)

pr 2 – суммарное поперечное определенного участка сосудистого русла

Из данного уравнения следует, что чем шире суммарное поперечное сечение сосудистого русла, тем ниже линейная скорость кровотока в нем. В сосудистой системе самым широким местом является капиллярная сеть: суммарное поперечное сечение всех капилляров большого круга кровообращения в 500-600 раз больше такового аорты. В связи с отмеченным наибольшее замедление движения крови происходит именно на уровне капилляров (линейная скорость кровотока в них составляет всего 0,5- 1 мм/с), тогда как максимальная линейная скорость кровотока отмечается в аорте (0,3-0,5 м/c), а в полых венах – данный показатель (в среднем около 0,2 м/с) в 2 раза ниже такового в аорте, поскольку полых вен две, и минутный объем крови, проходящий через поперечное сечение аорты, распределяется между двумя полыми венами.

Ø время полного кругооборота крови – это время, необходимое для того, что бы частица крови прошла большой и малый круги кровообращения. Оно составляет для человека 20-23 с и соответствует в среднем 27 систолам. Причем 1/5 этого времени приходится на продвижение крови по малому кругу кровообращения и 4/5 – на продвижение по большому.

Ø артериальный пульс – это ритмические колебания стенок артерий, вызванные повышением давления в них (по причине изменения объема крови) при каждой систоле желудочков. Так, в момент систолы желудочков в начальную часть артериальной системы, уже заполненную кровью, выбрасывается определенное дополнительное количество крови (соответствующее систолическому выбросу). В связи с тем, что кровь, как и любая жидкость, является несжимаемой, поступление порции крови в сосудистое русло в момент систолы желудочков сопровождается растяжением крупных артерий и повышением давления в них. После прекращения систолического выброса (т.е. с наступлением диастолы) крупные артерии, принявшие порцию крови из сердца, в силу своей эластичности сжимаются и проталкивают кровь далее. Расширение стенки и повышение давления происходить теперь в соседнем прилежащем участке артериальной части сосудистого русла. Таким образом, колебания давления, вызванные изменением кровенаполнения, волнообразно повторяясь и постепенно ослабевая, захватывают все новые и новые участки артерий, пока не достигнут артериол и капилляров, где пульсовая волна гаснет.

Рис. 18. Механизм распространения пульсовой волны

А – растяжение ближайшего к сердцу участка аорты

Б – растяжение следующего участка и заполнение его кровью

В – повторение этого процесса и распространение крови вдоль эластических артерий

Скорость распространения пульсовой волны не зависит от скорости движения крови, а во многом определяется эластичностью стенок крупных и средних артерий. Так, максимальная линейная скорость кровтока в крупных артериях составляет 0,3-0,5 м/с, а скорость распространения пульсовой волны в них – 5,5-8 м/с. С возрастом эластичность сосудистых стенок вследствие атеросклеротических изменений уменьшается, что обуславливает увеличение скорости распространения пульсовой волны. Частота пульса отражает частоту сердечных сокращений, а его твердость или наполнение – величину систолического выброса.

Различают два основных способа движения крови в сосудистом русле :

ü ламинарный (кровь движется параллельными слоями (или применительно ко всему сосуду при объемном рассмотрении – коаксиальными цилиндрами), которые являются также параллельными продольной оси сосуда), в норме такой тип движения имеет место в абсолютном большинстве сосудов. Причем внутренний или осевой ток составляют форменные элементы крови, движущиеся с наибольшей линейной скоростью, а пристеночный ток – образуют слои плазмы, движущиеся со сравнительно низкой скоростью, поскольку претерпевают наибольшее сопротивление движению в результате трения о стенку сосуда

ü турбулентный (при движении крови в сосуде возникают турбулентные завихрения, поскольку одни ее слои движутся параллельно продольной оси сосуда, а другие – перпендикулярно), в норме встречается в начальном отделе сосудистого русла, куда кровь изгоняется желудочками (в устье аорты и легочного ствола, в области дуги аорты), в местах бифуркации крупных сосудов (например, в месте деления общей сонной артерии на внутреннюю и наружную), а также в местах крутых изгибов сосудов. Вместе с тем при сильном разжижении крови (при выраженном уменьшении ее вязкости) кровоток может приобретать турбулентный характер и в других участках сосудистого русла, где он в норме должен быть ламинарным, и тогда суммарное сопротивление движению крови может возрасти, несмотря на уменьшение вязкости циркулирующей крови.

2. Основные механизмы транскапиллярного обмена

Микроциркуляторное русло и, прежде всего, капилляры являются важным звеном сердечно-сосудистой системы, поскольку именно на их уровне осуществляется обмен веществами между кровью и межклеточной жидкостью (транскапиллярный обмен). Стенка капилляров образована одним слоем эндотелиальных клеток и окружающей их базальной мембраной. В связи с тем, что в стенке капилляров отсутствуют гладкомышечные волокна, они не способны, подобно другим сосудам, активно изменять свой просвет, и степень их кровенаполнения напрямую зависит от тонуса (степени сужения) предшествующих артериол. Все капилляры по своему ходу обязательно сопровождаются рыхлой волокнистой соединительной тканью , которая является главным посредником гематотканевых отношений , поскольку представляет собой промежуточное звено на пути веществ из других тканей (эпителиальные, хрящевые, нервная, мышечная) в кровь и в обратном направлении. Средняя линейная скорость кровотока в капиллярах человека составляет 0,5-1 мм/с, а поскольку средняя их длина не превышает 0,5-1 мм, то время нахождения каждой клетки крови в капилляре достигает 1 с. Интенсивность эритроцитарного потока в капиллярах колеблется от 12 до 25 клеток и более в 1 с. Объем крови, заполняющий капилляры, как правило, составляет около 15% от общего объема периферической крови (т.е. крови, находящейся в циркуляции). Кровяное давление в капилляре (гидростатическое давление) не зависит от фаз сердечного цикла (т.е. не претерпевает пульсовых колебаний), но по ходу капилляра снижается (как и в целом по ходу сосудистого русла) в связи с тем, что кровь по мере продвижения затрачивает часть своей энергии на преодоление сил сопротивления движению. Так, в большинстве капилляров большого круга кровообращения (за исключением капилляров почечных клубочков) гидростатическое давление в артериальной части капилляра составляет около 30 мм.рт.ст., а венозной его части – 10 мм.рт.ст.

Процесс фильтрации жидкости из капилляра в межклеточные пространства окружающей рыхлой волокнистой соединительной ткани в артериальной части капилляра и обратной ее реабсорбции в кровь в венозной его части возможен благодаря определенным градиентам гидростатического и онкотического давления между кровью капилляра и межклеточной жидкостью. Так, например, в артериальной части кожных капилляров гидростатическое давление крови составляет 30 мм.рт.ст., а гидростатическое давление межклеточной жидкости – 15-20 мм.рт.ст. Следовательно, в артериальной части капилляра создается градиент гидростатического давления (равный примерно 10 мм.рт.ст.), способствующий движению жидкой части плазмы (и растворенных в ней низкомолекулярных веществ) из капилляра в межклеточные пространства . В результате такой фильтрации онкотическое давление крови по ходу капилляра повышается , поскольку крупномолекулярные белки, не могущие проникнуть вместе с плазмой из капилляра в ткани, оказываются растворенными в меньшем объеме жидкости. Гидростатическое же давление по ходу капилляра падает и у венозного его конца составляет 10 мм.рт.ст., тогда как межклеточной жидкости – 15-20 мм.рт.ст. Таким образом, градиент гидростатического давления в венозной части капилляра будет способствовать обратной реабсорбции жидкости и растворенных в ней веществ (в том числе конечных продуктов метаболизма, каких-то гуморальных факторов и т.д.) из межклеточных пространств в кровь. Облегчает и усиливает процесс реабсорбции и градиент онкотического давления , во многом создаваемый крупномолекулярными белками крови.


Рис. 19. Механизм осуществления транскапиллярного обмена

В нормальных условиях скорость фильтрации жидкости из капилляра в ткани практически равна скорости ее реабсорбции в обратном направлении, и только небольшая часть межклеточной жидкости возвращается в кровеносное русло через посредство лимфатической системы (фильтруется в слепо заканчивающиеся в тканях лимфатические капилляры, которые собираются в более крупные лимфатические сосуды, выносящие лимфу из органов; лимфа проходит через лимфатические узлы, где происходит ее очистка от антигенных субстанций, и возвращается в кровь через два лимфатических протока (правый и грудной лимфатические протоки), впадающих в вены большого круга кровообращения). Средняя скорость фильтрации во всех капиллярах организма человека составляет примерно 14 мл/мин (20 л/сутки), а реабсорбции – 12,5 мл/мин (18 л/сутки); по лимфатическим сосудам оттекает около 2 л/сутки жидкости.

3. Нейрогуморальные механизмы регуляции кровообращения

Механизмы регуляции кровообращения направлены на постоянное достижение четкого соответствия между потребностью каждой клетки организма в уровне кровоснабжения (зависящей от интенсивности обменных процессов в ней) и объемом крови, протекающей через сосуды той структуры, в состав которой входит эта клетка . Немаловажное значение для осуществления транскапиллярного обмена (то, ради чего и существует система кровообращения вообще) имеют не только объем протекающей через капилляры крови, но и уровень капиллярного давления, во многом зависящий от величины системного артериального давления. В связи с этим механизмы регуляции кровообращения направлены и на поддержание системного артериального давления на уровне, оптимальном для нормального осуществления транскапиллярного обмена и течения метаболических процессов в тканях.

Механизмы регуляции кровообращения в зависимости от того, на регуляцию системного или местного кровообращения они направлены, можно классифицировать на две группы :

Ø центральные (направлены на регуляцию системного кровообращения)

Ø местные (обеспечивают регуляцию уровня кровоснабжения определенных органов и тканей организма в зависимости от их потребностей, определяемых уровнем функциональной активности).

Центральные механизмы регуляции кровообращения обеспечивают поддержание на определенном уровне, оптимальном для нормального кровоснабжения периферических тканей (в том числе самого сердца), ряда системных показателей кровообращения , таких как системное артериальное давление, объем циркулирующей крови, суммарное периферическое сопротивление сосудистого русла, минутный объем кровотока и некоторые другие. Центральные механизмы регуляции своей деятельностью создают не только благоприятные условия для работы сердца, но и оптимального кровоснабжения всех тканей организма. Как правило, в реализации этих механизмов принимают участие как нервные, так и эндокринные компоненты, которые тесно переплетаются между собой. Центральные механизмы регуляции могут быть направлены на поддержание на определенном уровне:

ü общего объема крови , находящейся в циркуляции (объема периферической крови)

ü минутного объема кровотока , зависящего от интенсивности сердечной деятельности (в частности, от частоты сердечных сокращений и величины систолического выброса)

ü суммарного периферического сопротивления сосудистого русла , во многом зависящего от тонуса (степени сужения) артериол

ü системного артериального давления , зависящего от минутного объема кровотока и периферического сосудистого сопротивления

В связи с тем, что все эти системные параметры кровообращения взаимосвязаны между собой, центральные механизмы регуляции кровообращения своей деятельностью, включающейся в ответ на изменение какого-то одного из этих параметров, как правило, влияют и на многие другие. Так, нормализация системного артериального давления в случае его повышения может достигаться разными путями:

· изменением сердечной деятельности (в частности ее ослаблением, направленным на уменьшение минутного объема кровотока)

· уменьшением объема циркулирующей крови , как в результате усиления диуреза, так и вследствие усиленного депонирования крови в кровяных депо (селезенка, печень, подкожное сосудистое сплетение и некоторых других)

· снижением суммарного периферического сопротивления кровотоку в результате ослабления тонуса артериол.

Благодаря отмеченной избыточности способов поддержания на оптимальном уровне параметров системного кровообращения достигается высокая биологическая надежность в целом сердечно-сосудистой системы.

Механизмы регуляции сердечной деятельности, в том числе и сердечные рефлексы, возникающие в ответ на повышение артериального давления, рассмотрены в пункте 9 части I. В данном же пункте будут подробно охарактеризованы лишь те механизмы, которые обеспечивают регуляцию объема циркулирующей крови и суммарного периферического сопротивления кровотоку.

Регуляция суммарного периферического сопротивления кровотоку осуществляется преимущественно путем изменения тонуса артериол (сосудов, создающих в своей совокупности максимальное суммарное сопротивление движению крови), которое может достигаться в результате как нервных, так и гуморальных влияний . Большинство сосудов сосудистого русла (за исключением разве что капилляров, лишенных гладкомышечных и соединительнотканных компонентов в составе своей стенки) находятся в состоянии постоянного тонуса (т.н. базального тонуса ), обеспечиваемого автоматией некоторых гладкомышечных волокон, входящих в состав сосудистой стенки. Повышению тонуса большинства сосудов (за исключением сосудов сердца и головного мозга) способствуют и симпатические влияния; причем симпатический отдел вегетативной нервной системы оказывает постоянное (тоническое) прессорное влияние на сосуды, тогда как парасимпатический – тоническое влияние на сердце. Устранение симпатических влияний на сосуды тех или иных областей тела (путем перерезки определенных симпатических нервов) приводит к расслаблению гладкой мускулатуры денервированных сосудов, снижению их тонуса и, как следствие, увеличению их кровенаполнения и покраснению денервированных участков тела. Так, Клод Бернар в 1852 г в своем опыте, ставшим классическим, показал, что перерезка симпатического нерва на одной стороне шеи у кролика вызывает расширение сосудов, проявляющейся покраснением и потеплением уха оперированной стороны. В случае раздражения симпатического нерва на шее у кролика, напротив, наблюдается сужение сосудов уха на стороне раздражения и, как следствие, ухо бледнеет, и температура его понижается. Парасимпатический отдел вегетативной нервной системы в отличие от симпатического, напротив, оказывает сосудорасширяющее (депрессорное) действие, не носящее тонический характер.

Сосудодвигательный центр (открыт В.Ф. Овсянниковым в 1971 г), имеющий отношение к регуляции активности собственно симпатических и парасимпатических эфферентных нейронов, иннервирующих сосуды, заложен в продолговатом мозге (в области ромбовидной ямки и образован нейронами ретикулярной формации) и состоит из двух отделов:

ü прессорного (сосудосуживающего, реализует свои влияния на сосуды через посредство симпатических центров, заложенных в боковых рогах грудных сегментов спинного мозга)

ü депрессорного (сосудорасширяющего, реализует свои влияния на сосуды преимущественно через посредство парасимпатических центров, заложенных в стволе головного мозга и сакральных сегментах спинного мозга; сосудорасширяющее действие могут оказывать и некоторые симпатические нервы преимущественно на те сосуды, в гладкомышечных волокнах которых преобладают b 2 -адренорецепторы).

Оба эти отдела сосудодвигательного центра находятся в реципрокных отношениях: повышение активности какого-то одного отдела сопровождается угнетением активности другого. Причем, как правило, прессорный отдел находится в состоянии тонической активности, в связи с чем симпатический отдел вегетативной нервной системы оказывает тоническое прессорное влияние на сосуды. Поддержание тонической активности сосудодвигательного центра обеспечивается как постоянным притоком афферентной информации к нему от различных рецептивных полей организма (и прежде всего, рецепторов самих сосудов), так и благодаря некоторым гуморальным факторам, циркулирующим к крови (ионы водорода, СО 2 , лактат, АДФ и другие). Так, резкое падение артериального давления в сосудистом русле сопровождается значительным ослаблением афферентной импульсации от прессорецептров (барорецептров) как крупных сосудов (дуга аорты и каротидный синус – место бифуркации общей сонной артерии на внутреннюю и наружную сонные артерии; это две самые главные сосудистые рефлексогенные области), так и множества мелких сосудов, что приводит к повышению тонуса прессорного отдела и ослаблению тонуса депрессорного и, как следствие этого, генерализованному сужению артериол, повышению сосудистого сопротивления и системного артериального давления. Одновременно угнетаются парасимпатические и усиливаются симпатические влияния на сердце, что способствует интенсификации сердечной деятельности, увеличению минутного объема кровотока и, как следствие, повышению артериального давления.

Повышение артериального давления, напротив, сопровождается усилением афферентной импульсации от прессорецептров сосудистого русла , повышением активности депрессорного отдела сосудодвигательного центра, ослаблением симпатических и усилением парасимпатических влияний на артериолы, приводящих к понижению периферического сосудистого сопротивления и артериального давления (депрессорные рефлексы ). Параллельно с механизмами, направленными на снижение сосудистого сопротивления при повышенном артериальном давлении, включаются и механизмы, ослабляющие сердечную деятельность, что способствует снижению минутного объема кровотока и артериального давления.

Описанные механизмы регуляции артериального давления, запускаемые потоком афферентной информации от прессорецепторов сосудистого русла, относятся к механизмам регуляции по рассогласованию (или на выходе ) из системы. Они способны вернуть к норме уже измененное артериальное давление, но не способны заранее предотвратить его изменение. Наряду с этими механизмами регуляции в организме срабатывают и другие, предполагающие регуляцию артериального давления еще до момента его резкого изменения (регуляция на входе или по возмущению ). Такие механизмы срабатывают в ответ на раздражение рецепторов растяжения камер сердца и коронарных сосудов большим объемом заполняющей их крови и состоят в рефлекторном угнетении сердечной деятельности и некотором уменьшении сосудистого тонуса, способствующих удержанию артериального давления на нормальном уровне (т.е. препятствуют его возможному повышению).

Важную роль в регуляции сосудистого тонуса и артериального давления, наряду с прессорецепторами сосудистого русла, играют и хеморецепторы , адекватными раздражителями для которых являются повышенное содержание СО 2 , бикарбонатов, ионов водорода, кислых продуктов метаболизма и пониженное содержание кислорода в периферической крови. Возбуждение хеморецепторов, в отличие от возбуждения прессорецепторов, напротив, сопровождается усилением сердечной деятельности и повышением сосудистого тонуса, приводящим к повышению системного артериального давления (прессорные рефлексы ). Физиологическое значение таких прессорных рефлексов, возникающих в ответ на раздражение хеморецепторов сосудистого русла, состоит в том, что они способствуют улучшению кровоснабжения наиболее интенсивно работающих органов (т.е. увеличению объема доставляемой к ним крови в единицу времени) на фоне пониженного содержания кислорода в периферической крови.

Изменение сосудистого тонуса и, как следствие, артериального давления может возникать не только в ответ на раздражение рецепторов самой сердечно-сосудистой системы, но и на раздражение рецепторов других областей организма (т.н. сопряженные рефлексы). Так, болевое или холодовое раздражение большого участка кожи приводит, как правило, к активации симпатического отдела нервной системы, повышению сосудистого сопротивления и артериального давления.

Наряду с нервными механизмами регуляции сосудистого тонуса, носящими, как правило, рефлекторный характер, немаловажное значение имеют и гуморальные механизмы . Причем сосудосуживающим действием обладают следующие гормоны:

ü серотонин (гормон эпифиза, медиатор центральной нервной системы),

ü вазопрессин (или антидиуретический гормон , продуцируется нейросекреторными ядрами переднего гипоталамуса, переходит в общий кровоток на уровне нейрогипофиза), оказывает прессорное действие в сверхфизиологических дозах

ü катехоламины (адреналин и норадареналин – гормоны мозгового вещества надпочечников), через посредство a 1 -адренорецепторов, преобладающих в сосудах органов брюшной полости и кожи, оказывают сосудосуживающее действие, тогда как через посредство b 2 -адренорецепторов, преобладающих в сосудах сердца и головного мозга, напротив – сосудорасширяющее. В целом же катехоламины вызывают увеличение суммарного сосудистого сопротивления и артериального давления

ü ренин-ангиотензиновая система . Эндокринными клетками почек, окружающими в виде небольших скоплений приносящие артериолы клубочков нефронов, синтезируется ренин – протеолитичесикй фермент, который способствует превращению ангиотензиногена (белка плазмы крови) в ангитензин I . Ангиотензин I под действием фермента плазмы (дипептидкарбоксипептидазы) превращается в ангиотензин II , обладающий сильным сосудосуживающим действием. Кроме того, ангиотензин II оказывает и стимулирующее влияние на секреторную активность клубочковой зоны коры надпочечников, продуцирующей минералокортикоиды, которые, обладая антидиуретическим действием, способствуют увеличению объема циркулирующей крови и, как следствие, артериального давления. Несмотря на то, что ренин-ангиотензиновая система имеет отношение к регуляции системного кровообращения и артериального давления, главное ее назначение состоит в регуляции почечного кровотока, являющегося залогом нормальной почечной фильтрации (главного механизма мочеобразования).

Среди гуморальных факторов, оказывающих сосудорасширяющее действие , необходимо назвать следующие:

ü медуллин (липид, продуцируемый эндокринными клетками мозгового вещества почки)

ü ацетилхолин (медиатор парасимпатического отдела вегетативной нервной системы, а также ряда нейронов центральной нервной системы)

ü простагландины (производные ненасыщенных жирных кислот, образующиеся во многих тканях организма)

ü брадикинин (образуется во многих тканях под действием тканевого фермента калликреина из глобулина плазмы крови)

ü гистамин (наряду с эндокринными клетками желудочно-кишечного тракта, выделяется и тучными клетками и базофилами в результате их дегрануляции); введенный в системный кровоток, гистамин вызывает генерализованное расширение артериол и связанное с этим увеличение кровенаполнения капилляров и резкое снижение артериального давления, сопровождающееся нарушением транскапиллярного обмена и нормального метаболизма во многих тканях организма (и, прежде всего, в нервной). Кроме того, гистамин нарушает контакты между эндотелиальными клетками, увеличивая тем самым проницаемость капилляров. Совокупность перечисленных изменений в организме объединяется под названием шок (в частности, гистаминовый шок , поскольку вызван гистамином)

ü местное сосудорасширяющее действие оказывают конечные продукты метаболизма, лактат, накопление в тканях Н + -ионов, АДФ, АМФ , тогда как, поступая в общий кровоток эти вещества возбуждают хеморецепторы сосудистого русла, что сопровождается повышением системного артериального давления.

В регуляции объема циркулирующей крови первостепенную роль играют гуморальные механизмы. Так, резкое снижение объема циркулирующей крови в результате сильной кровопотери, наряду с нейрогуморальными механизмами, способствующими повышению сосудистого тонуса, сопровождается и комплексом процессов, неправленых на увеличение объема циркулирующей крови, среди которых необходимо назвать следующие:

ü выход крови в циркуляцию из кровяных депо (реализуется в основном за счет нервных влияний на органы-депо крови)

ü усиленная секреция вазопрессина (антидиуретического гормона), увеличивающего обратную реабсорбцию воды в канальцах нефронов и собирательных трубочках почек, что уменьшает диурез и способствует сохранению жидкости в организме

ü усиленная секреция ренина почками и связанное с ним образование ангиотензина II, который, с одной стороны, оказывает прессорное действие на сосуды, а с другой – способствует усилению секреции минералокортикоидов клубочковой зоной коры надпочечников. Минералокортикоиды же усиливают обратную реабсорбцию ионов натрия, хлора и вслед за ними воды из первичной мочи, уменьшая тем самым диурез и способствуя увеличению объема циркулирующей крови.

Местные механизмы регуляции кровообращения направлены на достижение адекватного потребностям периферических тканей уровня их кровоснабжения. В основе этих механизмов лежат преимущественно гуморальные механизмы регуляции . Так, повышение температуры (в связи с высоким уровнем обменных процессов), концентрации кислых продуктов метаболизма, СО 2 , АДФ и АМФ (в связи с усиленным расходом АТФ), осмотического давления (вследствие увеличения концентрации низкомолекулярных веществ) в усиленно работающем органе оказывают местное сосудорасширяющее действие. Вместе с тем, поступая в общий кровоток, эти вещества как через посредство раздражения хеморецепторов сосудистого русла, так и непосредственно действуя на сосудодвигательный центр, способствуют интенсификации сердечной деятельности, повышению системного сосудистого сопротивления и артериального давления. Увеличение же минутного объема кровотока, с одной стороны, на фоне сужения сосудов органов, проявляющих слабую активность, и расширения сосудов усиленно работающих органов, с другой, обеспечивает высокий уровень кровоснабжения последних. Следовательно, в случае усиленной работы каких-то органов, во-первых, повышается минутный объем кровотока и артериальное давление , а во-вторых, включается перераспределительный механизм , способствующий поступлению как можно большего количества крови из этого возросшего минутного объема к органам с высоким уровнем функциональной активности.

На физические закономерности движения крови по сосудам накладываются физиологические факторы: работа сердца, изменения тонуса сосудов, объема циркулирующей крови и ее вязкости и др., которые определяют особенности кровообращения в различных частях организма.

Давление крови в артериях прямо зависит от объема крови, поступающей из сердца, и сопротивления оттоку крови, периферическими сосудами.

Кровяное давление в аорте и крупных артериях постоянно колеблется.

Давление крови в аорте повышается с 80 до 120 мм рт.ст. при выбросе крови из левого желудочка в фазу быстрого изгнания. В этот период приток крови в аорту из сердца больше, чем отток в артерии. Затем давление в аорте уменьшается. Весь период уменьшения связан с оттоком крови из аорты на периферию.

Максимальное давление в аорте во время систолы желудочков называется систолическим, а минимальное давление во время диастолы - диастолическим. Нормальными значениями артериального давления у человека, измеренного на плечевой артерии, считают систолическое (САД) - 110-140 мм рт.ст., диастолическое (ДАД) - 70-90 мм рт.ст. Разница между систолическим и диастолическим давлением называется пульсовым давлением. Среднестатистически это давление равно 40-45 мм рт.ст.

При продвижении крови от сердца к периферии колебания давления ослабевают в связи с эластичностью аорты и артерий, поэтому кровь в аорте и артериях продвигается толчками, а в артериолах и капиллярах - непрерывно.

Наибольшее падение давления происходит в артериолах и затем в капиллярах. Несмотря на то что капилляры имеют меньший диаметр, чем артериолы, уменьшение давления на более значительную величину происходит в артериолах. Это связано с их большей длиной по сравнению с капиллярами. В артериальной части капилляра (на «входе») давление крови равно 35 мм рт.ст., а в венозной (на «выходе») - 15 мм рт.ст.

В полых венах давление приближается к 0 мм рт.ст.

Пульсовые колебания в сосудистом русле

В артериях периодически возникают колебания их стенок, называемые артериальным пульсом. Запись артериального пульса называется сфигмографией. На сфигмограмме различают анакроту, катакроту, инцизуру и дикротический подъём. Его природа связана с изменением давления крови в аорте при выбросе ее из сердца. Стенка аорты при этом несколько растягивается, а затем возвращается к исходному размеру вследствие своей эластичности. Механическое колебание стенки аорты, называемое пульсовой волной, передается далее на артерии, артериолы и здесь, не доходя до капилляров, затухает. Скорость распространения пульсовой волны выше скорости течения крови, в среднем она равна 10 м/с. Поэтому пульсовая волна достигает лучевой артерии в области запястья (наиболее часто используемое место регистрации пульса) примерно за 100 мс при расстоянии от сердца до запястья 1 м.

Как уже отмечалось, по величине давления кровеносную систему принято подразделять на два отдела - систему высокого и систему низкого давления. К первому из них относят прекапиллярный отдел сердечно-сосудистой системы, а ко второму - посткапиллярный. Такое деление определяется не только различиями давления, но и неодинаковыми механизмами, которые его определяют. Так, если уровень артериального давления зависит от тонуса резистивных сосудов, с одной стороны, и сердечного выброса, с другой, то венозное давление в конечном счете может определяться четырьмя группами факторов: 1) силами подпора - оттоком из капилляров; 2) фронтальным сопротивлением, зависящим от работы правого сердца; 3) тонусом вен и 4) экстравазальными факторами (сдавлением вен). Снижение давления по направлению тока крови в различных областях далеко не одинаково и зависит от особенностей строения русла. Так, если в большинстве сосудистых областей давление в артериолах диаметром 30-40 мкм составляет 70-80% от системного артериального давления (Richardson, Zweifach, 1970), то эти соотношения для сосудов мозга несколько отличны. По данным Shapiro с соавт. (1971), уже в ветвях средней мозговой артерии кошек диаметром более 455 мкм давление составляет 61% от аортального, а в пиальных артериолах диаметром 40-25 мкм оно уменьшается еще на 10%.

Величина среднединамического давления в сосудистой системе колеблется в широком диапазоне (таблица 4), что необходимо учитывать при выборе соответствующих манометров.

В настоящее время в практике физиологических исследований для регистрации давления в различных участках сосудистого русла используют жидкостные, пружинные и электрические манометры.

По данным Wiggers (1957), манометры для регистрации давления крови должны обладать следующими свойствами:
1. Высокой чувствительностью и способностью регистрировать давление в достаточно широком диапазоне (1 мм вод. ст.- 300 мм рт. ст.).
2. Малой инерционностью, т. е. достаточно высокой частотой собственных колебаний, которая должна превышать в 5-10 раз частоту колебаний исследуемого процесса.
3. Линейностью характеристики.
4. Малым смещением (объемом его) в системе соединительных трубок между манометром и кровеносным сосудом (0,1-0,5 мм 3).
5. Возможностью синхронно с записью артериального давления регистрировать на одной и той же ленте другие физиологические процессы.

Следует отметить, что не все применяемые в исследованиях манометры отвечают указанным выше требованиям.

В жидкостных манометрах, как известно, исследуемое давление уравновешивается столбом манометрической жидкости (обычно ртути или воды). Они)могут быть приспособлены для регистрации стационарных и переменных давлений в диапазоне от 200-300 мм рт. ст. до 1·10 -4 мм рт. ст., что соответствует величине давления в различных участках сосудистого русла. Конструктивно эти приборы могут быть выполнены в виде одноколенного чашечного манометра (аппарат Рива - Роччи), манометра с наклонной трубкой либо двухколенного U-образного манометра, предложенного Пуазейлем еще в 1828 г.

При работе с жидкостными, в частности ртутными, манометрами следует иметь в виду, что для детальной регистрации быстрых колебаний они совершенно непригодны (А. Б. Коган, С. И. Щитов, 1967). Это определяется собственной периодичностью жидкостного манометра, которая зависит от длины столба жидкости и подчиняется закону колебаний маятника:
(3.1)
где Т - период колебаний; l - длина столба жидкости; g - ускорение силы тяжести.

Из формулы следует, что практически период колебаний столба жидкости в обычном ртутном манометре и соединительной трубке составляет около 2 с. Отсюда частота собственных колебаний f = 1/T составит около 0,5 Гц. Очевидно, что эта частота может быть резонансной для регистрируемых колебаний, вследствие чего амплитуда их будет преувеличена, а при увеличении или снижении частоты вынужденных колебаний она будет уменьшенной. При этом правильный характер записи будет при частоте, превышающей резонансную (А. Б. Коган, С. И. Щитов, 1967).

Необходимо отметить, что жидкостные манометры могут быть использованы не только для регистрации абсолютной величины давления, но и какой-либо относительной переменной величины (разности двух давлений, амплитуды и быстроты давления). Такие манометры, как известно, носят название дифференциальных.

В качестве наиболее простых дифференциальных манометров могут быть использованы U-образные ртутные манометры. Для получения разности давления в 2 сосудах (например, в сонной артерии и яремной вене, в центральном и периферическом концах сонной артерии) сосуды подсоединяют к обоим коленам манометра. Явное удобство этого способа дифференцирования состоит в том, что он не требует раздельного измерения давлений и специальных приспособлений для синхронности наблюдений.

В практике физиологических экспериментов весьма часто возникает необходимость в определении так называемого среднединамического давления, величина которого используется, в частности, для расчета общего периферического сопротивления сосудов. Для его регистрации может быть использован апериодизированный манометр, предложенный еще И. М. Сеченовым в 1861 году. Его отличительной чертой является «переуспокоенный» режим работы, который достигается введением в соединительную часть (между коленами) крана или резиновой трубки с винтовыми зажимами. За счет сужения соединительной части достигается увеличение внешнего трения ртути и демпфируются все быстрые колебания, обусловленные деятельностью сердца. Результирующим в этом случае будет уровень эффективного (среднединамического) давления.

В дополнение к характеристике жидкостных манометров укажем, что они применимы для регистрации абсолютных величин давления как в артериальных и венозных сосудах, так и в капиллярах. При измерении венозного давления следует иметь в виду, что гидростатическое давление крови в венах может оказывать существенное влияние на измеряемые величины гемодинамического давления. С этой целью манометр нужно устанавливать в таком положении, чтобы уровень его нулевого деления, место пункции вены и положение правого предсердия совпадали.

В пружинных манометрах в отличие от жидкостных измеряемое давление уравновешивается силами так называемого упругого элемента, которые возникают при его деформации. В зависимости от элемента (его геометрической формы) пружинные манометры могут быть трубчатыми, мембранными, сильфонными и т. д.

Достоинством этого класса манометров является высокая чувствительность и возможность создания оптимальной частотной характеристики. Пружинные манометры обладают собственной частотной характеристикой от 17 (модель Фика) до 450 Гц (модель Уиггерса), что позволяет регистрировать как максимальное, так и минимальное артериальное давление.

В электрических манометрах, большинство которых предназначено для регистрации переменных величин (за исключением манометров сопротивления), давление передается на устройства, изменяющие свои электрические параметры (ЭДС, индуктивность, сопротивление). Эти изменения регистрируются с помощью соответствующих электроизмерительных и осциллографических приборов. Достоинством электроманометров является их большая чувствительность и малая инерционность, что позволяет регистрировать малые и быстроизменяющиеся величины давления.

В качестве датчиков в электроманометрах используются пьезокристаллы, тензодатчики, угольнопорошковые и проволочные датчики сопротивления и др. Последний тип использован в отечественном манометре ЭМ2-01.

Кровяное давление - давление крови на стенки кровеносных сосудов и камер сердца; важнейший энергетический параметр системы кровообращения, обеспечивающий непрерывность кровотока в кровеносных сосудах, диффузию газов и фильтрацию растворов ингредиентов плазмы крови через мембраны капилляров в ткани (обмен веществ), а также в почечных клубочках (образование мочи).

В соответствии с анатомо-физиологическим разделением сердечно-сосудистой системы (Сердечно-сосудистая система)различают внутрисердечное, артериальное, капиллярное и венозное К. д., измеряемое либо в миллиметрах водяного столба (в венах), либо миллиметрах ртутного столба (в других сосудах и в сердце). Рекомендуемое, согласно Международной системе единиц (СИ), выражение величин К. д. в паскалях (1 мм рт. ст . = 133,3 Па ) в медицинской практике не используется. В артериальных сосудах, где К. д., как и в сердце, значительно колеблется в зависимости от фазы сердечного цикла, различают систолическое и диастолическое (в конце диастолы) артериальное давление, а также пульсовую амплитуду колебаний (разница между величинами систолического и диастолического АД), или пульсовое АД. Среднюю от изменений за весь сердечный цикл величину К. д., определяющую среднюю скорость кровотока в сосудах, называют средним гемодинамическим давлением.

Внутрисердечное давление в полостях предсердий и желудочков сердца значительно различается в фазах систолы и диастолы, а в тонкостенных предсердиях оно также существенно зависит от колебаний внутригрудного давления по фазам дыхания, принимая иногда в фазе вдоха отрицательные значения. В начале диастолы, когда миокард расслаблен, заполнение камер сердца кровью происходит при минимальном давлении в них, близком к нулю. В период систолы предсердий отмечается небольшой прирост давления в них и в желудочках сердца. Давление в правом предсердии, в норме не превышающее обычно 2-3 мм рт. ст ., принимают за так называемый флебостатический уровень, по отношению к которому оценивают величину К. д. в венах и других сосудах большого круга кровообращения.

В период систолы желудочков, когда клапаны сердца закрыты, практически вся энергия сокращения мускулатуры желудочков расходуется на объемное сжатие содержащейся в них крови, порождающее в ней реактивное напряжение в форме давления. Внутрижелудочковое давление нарастает до тех пор, пока в левом желудочке оно не превысит давления в аорте, а в правом - давления в легочном стволе, в связи с чем клапаны этих сосудов открываются и происходит изгнание крови из желудочков, по окончании которого начинается диастола, и К. д. в желудочках резко падает.

Артериальное давление формируется за счет энергии систолы желудочков в период изгнания из них крови, когда каждый желудочек и артерии соответствующего ему круга кровообращения становятся единой камерой, и сжатие крови стенками желудочков распространяется на кровь в артериальных стволах, а изгоняемая в артерии порция крови приобретает кинетическую энергию, равную половине произведения массы этой порции на квадрат скорости изгнания. Соответственно энергия, сообщаемая артериальной крови в период изгнания, имеет тем большие значения, чем больше ударный объем сердца и чем выше скорость изгнания, зависимая от величины и скорости нарастания внутрижелудочкового давления, т.е. от мощности сокращения желудочков. Толчкообразное, в виде удара, поступление крови из желудочков сердца вызывает локальное растяжение стенок аорты и легочного ствола и порождает ударную волну давления, распространение которой с перемещением локального растяжения стенки по длине артерии обусловливает формирование артериального пульса (Пульсация); графическое отображение последнего в форме сфигмограммы или плетизмограммы соответствует и отображению динамики К. д. в сосуде по фазам сердечного цикла.

Основной причиной трансформации большей части энергии сердечного выброса в артериальное давление, а не в кинетическую энергию потока является сопротивление кровотоку в сосудах (тем большее, чем меньше их просвет, больше их длина и выше вязкость крови), формируемое в основном на периферии артериального русла, в мелких артериях и артериолах, называемых сосудами сопротивления, или резистивными сосудами. Затруднение току крови на уровне этих сосудов создает в расположенных проксимально от них артериях торможение потока и условия для сжатия крови в период изгнания ее систолического объема из желудочков. Чем выше периферическое сопротивление, тем большая часть энергии сердечного выброса трансформируется в систолический прирост АД, определяя величину пульсового давления (частично энергия трансформируется в тепло от трения крови о стенки сосудов). Роль периферического сопротивления кровотоку в формировании К. д. наглядно иллюстрируется различиями АД в большом и малом кругах кровообращения. В последнем, имеющем более короткое и широкое сосудистое русло, сопротивление кровотоку значительно меньшее, чем в большом круге кровообращения, поэтому при равных скоростях изгнания одинаковых систолических объемов крови из левого и правого желудочков давление в легочном стволе примерно в 6 раз меньше, чем в аорте.

Систолическое АД складывается из величин пульсового и диастолического давления. Истинная его величина, называемая боковым систолическим АД, может быть измерена с помощью манометрической трубки, введенной в просвет артерии перпендикулярно оси тока крови. Если внезапно прекратить кровоток в артерии путем полного пережатия ее дистальнее манометрической трубки (или расположить просвет трубки против тока крови), то систолическое АД сразу возрастает за счет кинетической энергии потока крови. Эту более высокую величину К. д. называют конечным, или максимальным, или полным, систолическим АД, т.к. она эквивалентна практически полной энергии крови в период систолы. И боковое, и максимальное систолическое К. д. в артериях конечностей человека может быть измерено бескровно с помощью артериальной тахоосциллографии по Савицкому. При измерении АД по Короткову определяют значения максимального систолического АД. Величина его в норме в покое составляет 100-140 мм рт. ст ., боковое систолическое АД обычно на 5-15 мм ниже максимального. Истинная величина пульсового АД определяется как разница между боковым систолическим и диастолическим давлением.

Диастолическое АД формируется благодаря эластичности стенок артериальных стволов и их крупных ветвей, образующих в совокупности растяжимые артериальные камеры, называемые компрессионными (аортоартериальная камера в большом круге кровообращения и легочный ствол с крупными его ветвями - в малом). В системе жестких трубок прекращение нагнетания в них крови, как это происходит в диастоле после закрытия клапанов аорты и легочного ствола, привело бы к быстрому исчезновению давления, появившегося в период систолы. В реальной сосудистой системе энергия систолического прироста АД в значительной своей части кумулируется в форме упругого напряжения растягиваемых эластических стенок артериальных камер. Чем выше периферическое сопротивление кровотоку, тем дольше эти упругие силы обеспечивают объемное сжатие крови в артериальных камерах, поддерживая К. д., величина которого по мере оттока крови в капилляры и спадения стенок аорты и легочного ствола постепенно снижается к концу диастолы (тем больше, чем длительнее диастола). В норме диастолическое К. д. в артериях большого круга кровообращения составляет 60-90 мм рт. ст . При нормальном или увеличенном сердечном выбросе (минутном объеме кровообращения) учащение сердечных сокращений (короткая диастола) или значительное повышение периферического сопротивления кровотоку обусловливает повышение диастолического АД, поскольку равенство оттока крови из артерий и поступления в них крови из сердца достигается при большем растяжении и, следовательно, большем упругом напряжении стенок артериальных камер в конце диастолы. Если эластичность артериальных стволов и крупных артерий утрачивается (например, приАтеросклерозе), то диастолическое АД снижается, т.к. часть энергии сердечного выброса, кумулируемая в норме растянутыми стенками артериальных камер, расходуется на дополнительный прирост систолического АД (с повышением пульсового) и ускорение кровотока в артериях в период изгнания.

Среднее гемодинамическое, или среднее, К. д. представляет собой среднюю величину от всех его переменных значений за сердечный цикл, определяемую как отношение площади под кривой изменений давления к длительности цикла. В артериях конечностей среднее К. д. может быть достаточно точно определено с помощью тахоосциллографии, В норме оно составляет 85-100 мм рт. ст ., приближаясь к величине диастолического АД тем больше, чем длительнее диастола. Среднее АД не имеет пульсовых колебаний и может изменяться лишь в интервале нескольких сердечных циклов, являясь поэтому наиболее стабильным показателем энергии крови, значения которого определяются практически только величинами минутною объема кровоснабжения и общего периферического сопротивления кровотоку.

В артериолах, оказывающих наибольшее сопротивление кровотоку, на его преодоление расходуется значительная часть общей энергии артериальной крови; пульсовые колебания К. д. в них сглаживаются, среднее К. д. по сравнению с внутриаортальным снижается примерно в 2 раза.

Капиллярное давление зависит от давления в артериолах. Стенки капилляров не обладают тонусом; общий просвет капиллярного русла определяется числом открытых капилляров, что зависит от функции прекапиллярных сфинктеров и величины К. д. в прекапиллярах. Капилляры открываются и остаются открытыми только при положительном трансмуральном давлении - разнице между К. д. внутри капилляра и тканевым давлением, сжимающим капилляр извне. Зависимость числа открытых капилляров от К. д. в прекапиллярах обеспечивает своеобразную саморегуляцию постоянства капиллярного К. д. Чем выше К. д. в прекапиллярах, тем многочисленнее открытые капилляры, больше их просвет и вместимость, а следовательно, и в большей степени падает К. д. на артериальном отрезке капиллярного русла. Благодаря этому механизму среднее К. д. в капиллярах отличается относительной стабильностью; на артериальных отрезках капилляров большого круга кровообращения оно составляет 30-50 мм рт. ст ., а на венозных отрезках в связи с расходом энергии на преодоление сопротивления по длине капилляра и фильтрацию оно снижается до 25-15 мм рт. ст . Существенное влияние на капиллярное К. д. и его динамику на протяжении капилляра оказывает величина венозного давления.

Венозное давление на посткапиллярном отрезке мало отличается от К. д. в венозной части капилляров, но значительно падает на протяжении венозного русла, достигая в центральных венах величины, близкой к давлению в предсердии. В периферических венах, расположенных на уровне правого предсердия. К. д. в норме редко превышает 120 мм вод. ст ., что соизмеримо с величиной давления кровяного столба в венах нижних конечностей при вертикальном положении тела. Участие гравитационного фактора в формировании венозного давления наименьшее при горизонтальном положении тела. В этих условиях К. д. в периферических венах формируется в основном за счет энергии притока в них крови из капилляров и зависит от сопротивления оттоку крови из вен (в норме преимущественно от внутригрудного и внутрипредсердного давления) и в меньшей степени - от тонуса вен, определяющего их вместимость для крови при данном давлении и соответственно скорость венозного возврата крови к сердцу. Патологический рост венозного К. д. в большинстве случаев обусловлен нарушением оттока из них крови.

Относительно тонкая стенка и большая поверхность вен создают предпосылки для выраженного влияния на венозное К. д. изменений внешнего давления, связанных с сокращением скелетных мышц, а также атмосферного (в кожных венах), внутригрудного (особенно в центральных венах) и внутрибрюшного (в системе воротной вены) давления. Во всех венах К. д. колеблется в зависимости от фаз дыхательного цикла, понижаясь в большинстве из них на вдохе и возрастая на выдохе. У больных с бронхиальной обструкцией эти колебания обнаруживаются визуально при осмотре шейных вен, резко набухающих в фазе выдоха и полностью спадающихся на вдохе. Пульсовые колебания К. д. в большинстве отделов венозного русла выражены слабо, являясь с основном передаточными от пульсации расположенных рядом с венами артерий (на центральные и близкие к ним вены могут передаваться пульсовые колебания К. д. в правом предсердии, что находит отражение в венном Пульсе). Исключение представляет воротная вена, в которой К. д. может иметь пульсовые колебания, объясняемые возникновением в период систолы сердца так называемого гидравлического затвора для прохождения по ней крови в печень (в связи с систолическим приростом К. д. в бассейне печеночной артерии) и последующим (в период диастолы сердца) изгнанием крови из воротной вены в печень.

Значение кровяного давления для жизнедеятельности организма определяется особой ролью механической энергии для функций крови как универсального посредника в обмене веществ и энергии в организме, а также между организмом и средой обитания. Дискретные порции механической энергии, генерируемой сердцем только в период систолы, преобразованы в кровяном давлении в стабильный, действующий и в период диастолы сердца, источник энергетического снабжения транспортной функции крови, диффузии газов и процессов фильтрации в капиллярном русле, обеспечивающих непрерывность обмена веществ и энергии в организме и взаиморегуляцию функции различных органов и систем гуморальными факторами, переносимыми циркулирующей кровью.

Кинетическая энергия составляет лишь малую часть всей энергии, сообщенной крови работой сердца. Основным энергетическим источником движения крови является перепад давления между начальным и конечным отрезками сосудистого русла. В большом круге кровообращения такой перепад, или полный градиент, давления соответствует разнице величин среднего К. д. в аорте и в полых венах, которая в норме практически равна величине среднего АД. Средняя объемная скорость кровотока, выраженная, например, минутным объемом кровообращения, прямо пропорциональна полному градиенту давления, т.е. практически величине среднего АД, и обратно пропорциональна величине общего периферического сопротивления кровотоку. Эта зависимость лежит в основе расчета величины общего периферического сопротивления как отношения среднего АД к минутному объему кровообращения. Другими словами, чем выше среднее АД при неизменном сопротивлении, тем выше и кровоток в сосудах и тем большая масса обменивающихся в тканях веществ (массообмен) транспортируется в единицу времени кровью через капиллярное русло. Однако в физиологических условиях увеличение минутного объема кровообращения, необходимое для интенсификации тканевого дыхания и обмена веществ, например при физической нагрузке, как и его рациональное уменьшение для условий покоя, достигается в основном динамикой периферического сопротивления кровотоку, причем таким образом, чтобы величина среднего АД не подвергалась существенным колебаниям. Относительная стабилизация среднего АД в аортоартериальной камере с помощью специальных механизмов его регуляции создает возможность динамичных вариаций распределения кровотока между органами по их потребностям путем только локальных изменений сопротивления кровотоку.

Увеличение или уменьшение массообмена веществ на мембранах капилляров достигается зависимыми от К. д. изменениями объема капиллярного кровотока и площади мембран в основном за счет изменений числа открытых капилляров. При этом благодаря механизму саморегуляции капиллярного К. д. в каждом отдельном капилляре оно поддерживается на уровне, необходимом для оптимального режима массообмена по всей длине капилляра с учетом важности обеспечения строго определенной степени снижения К. д. в направлении к венозному отрезку.

В каждой части капилляра массообмен на мембране непосредственно зависит от величины К. д. именно в этой части. Для диффузии газов, например кислорода, значение К. д. определяется тем, что диффузия происходит благодаря разнице парциального давления (напряжения) данного газа по обе стороны мембраны, а оно есть часть общего давления в системе (в крови - часть К. д.), пропорциональная объемной концентрации данного газа. Фильтрация растворов различных веществ через мембрану обеспечивается фильтрационным давлением - разницей между величинами трансмурального давления в капилляре и онкотического давления плазмы крови, составляющего на артериальном отрезке капилляра около 30 мм рт. ст . Поскольку на этом отрезке трансмуральное давление выше онкотического, водные растворы веществ фильтруются через мембрану из плазмы в межклеточное пространство. В связи с фильтрацией воды концентрация белков в плазме капиллярной крови повышается, и онкотическое давление возрастает, достигая в средней части капилляра величины трансмурального давления (фильтрационное давление уменьшается до нуля). На венозном отрезке из-за падения К. д. по длине капилляра трансмуральное давление становится ниже онкотического (фильтрационное давление становится отрицательным), поэтому водные растворы фильтруются из межклеточного пространства в плазму, снижая ее онкотическое давление до исходных значений. Т.о., степень падения К. д. по длине капилляра определяет соотношение площадей фильтрации растворов через мембрану из плазмы в межклеточное пространство и обратно, влияя тем самым на баланс водного обмена между кровью и тканями. В случае патологического повышения венозного К. д. фильтрация жидкости из крови в артериальной части капилляра превышает возврат жидкости в кровь на венозном отрезке, что приводит к задержке жидкости в межклеточном пространстве, развитию отека (Отёки).

Особенности структуры капилляров клубочков почек (Почки) обеспечивают высокий уровень К. д. и положительное фильтрационное давление на всем протяжении капиллярных петель клубочка, что способствует большой скорости образования экстракапиллярного ультрафильтрата - первичной мочи. Выраженная зависимость мочеобразовательной функции почек от К. д. в артериолах и капиллярах клубочков объясняет особую физиологическую роль почечных факторов в регуляции величины К. д. в артериях больше о круга кровообращения.

Три основных фактора определяют уровень артериального давления в организме: фактор сердца (частота и сила сокращений), фактор сосудов (просвет сосудов), фактор крови (объем циркулирующей крови, ее реологические свойства. Значение каждого из указанных факторов мы рассматривали на лекциях, посвященных кровообращению. Следует добавить, что при недостаточности одного из факторов его утраченные функции выполняют те, что остались неповрежденными. Например, при уменьшении сосудистого тонуса, необходимый уровень артериального давления может обеспечиваться повышением частоты сердечных сокращений, и увеличению ударного объема. Кроме внутренних, организменных механизмов регуляции уровня артериального давления необходимо отметить и значение поведенческих механизмов. Например, повышение двигательной активности сопровождается повышением уровня артериального давления, а снижение двигательной активности приводит к снижению артериального давления.

На физические закономерности движения крови по сосудам накладываются физиологические факторы: работа сердца, изменения тонуса сосудов, объема циркулирующей крови и ее вязкости и др., которые определяют особенности кровообращения в различных частях организма.

Давление крови в артериях прямо зависит от объема крови, поступающей из сердца, и сопротивления оттоку крови, периферическими сосудами.

Кровяное давление в аорте и крупных артериях постоянно колеблется.

Давление крови в аорте повышается с 80 до 120 мм рт.ст. при выбросе крови из левого желудочка в фазу быстрого изгнания. В этот период приток крови в аорту из сердца больше, чем отток в артерии. Затем давление в аорте уменьшается. Весь период уменьшения связан с оттоком крови из аорты на периферию.

Максимальное давление в аорте во время систолы желудочков называется систолическим, а минимальное давление во время диастолы - диастолическим. Нормальными значениями артериального давления у человека, измеренного на плечевой артерии, считают систолическое (САД) - 110-140 мм рт.ст., диастолическое (ДАД) - 70-90 мм рт.ст. Разница между систолическим и диастолическим давлением называется пульсовым давлением. Среднестатистически это давление равно 40-45 мм рт.ст.

При продвижении крови от сердца к периферии колебания давления ослабевают в связи с эластичностью аорты и артерий, поэтому кровь в аорте и артериях продвигается толчками, а в артериолах и капиллярах - непрерывно.

Наибольшее падение давления происходит в артериолах и затем в капиллярах. Несмотря на то что капилляры имеют меньший диаметр, чем артериолы, уменьшение давления на более значительную величину происходит в артериолах. Это связано с их большей длиной по сравнению с капиллярами. В артериальной части капилляра (на «входе») давление крови равно 35 мм рт.ст., а в венозной (на «выходе») - 15 мм рт.ст.

В полых венах давление приближается к 0 мм рт.ст.

Пульсовые колебания в сосудистом русле

В артериях периодически возникают колебания их стенок, называемые артериальным пульсом. Запись артериального пульса называется сфигмографией. На сфигмограмме различают анакроту, катакроту, инцизуру и дикротический подъём. Его природа связана с изменением давления крови в аорте при выбросе ее из сердца. Стенка аорты при этом несколько растягивается, а затем возвращается к исходному размеру вследствие своей эластичности. Механическое колебание стенки аорты, называемое пульсовой волной, передается далее на артерии, артериолы и здесь, не доходя до капилляров, затухает. Скорость распространения пульсовой волны выше скорости течения крови, в среднем она равна 10 м/с. Поэтому пульсовая волна достигает лучевой артерии в области запястья (наиболее часто используемое место регистрации пульса) примерно за 100 мс при расстоянии от сердца до запястья 1 м.



Loading...Loading...